Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Epithelial septate junction assembly relies on melanotransferrin iron binding and endocytosis in Drosophila.

Nature Cell Biology 2010 November
Iron is an essential element in many biological processes. In vertebrates, serum transferrin is the major supplier of iron to tissues, but the function of additional transferrin-like proteins remains poorly understood. Melanotransferrin (MTf) is a phylogenetically conserved, iron-binding epithelial protein. Elevated MTf levels have been implicated in melanoma pathogenesis. Here, we present a functional analysis of MTf in Drosophila melanogaster. Similarly to its human homologue, Drosophila MTf is a lipid-modified, iron-binding protein attached to epithelial cell membranes, and is a component of the septate junctions that form the paracellular permeability barrier in epithelial tissues. We demonstrate that septate junction assembly during epithelial maturation relies on endocytosis and apicolateral recycling of iron-bound MTf. Mouse MTf complements the defects of Drosophila MTf mutants. Drosophila provides the first genetic model for the functional dissection of MTf in epithelial junction assembly and morphogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app