Add like
Add dislike
Add to saved papers

In vivo intersegmental motion of the cervical spine using an inverse kinematics procedure.

BACKGROUND: The main functions of the cervical spine are the stabilization and the orientation of the head. Pathologies are complex and difficult to diagnose. The first sign of the dysfunction is an abnormal intervertebral motion. It is the purpose of this feasibility study to determine the intersegmental motions and loading conditions of the cervical spine in vivo with standard clinical investigation methods.

METHODS: We propose a new approach which merges full flexion-extension X-ray images, and continuous motion of the whole cervical spine obtained with a tracking motion system. These data were used as input for a subject-specific rigid body model of the cervical spine computed with the software MSC.Adams. This model simulates the cervical spine extension/flexion, the intervertebral motions are deduced using an inverse kinematics procedure.

FINDINGS: Subject-specific rigid body models were computed from data of two subjects. The intersegmental motion and loading conditions were calculated. We found that the loading amplitudes depended on the intervertebral level, and that subject specific patterns were highlighted. We noticed an unsymmetrical behavior in flexion and extension. Furthermore intervertebral rotations were correlated with the global motion of the cervical spine.

INTERPRETATION: A subject-specific rigid body model merged data from classical flexion-extension radiographs and noninvasive external motion capture. Our approach is based on inverse kinematics allowing the estimation of the intervertebral motion and mechanical behavior of the cervical spine in vivo, which gives valuable information concerning biomechanics of the cervical spine in vivo for cervical spine clinical investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app