Add like
Add dislike
Add to saved papers

Prophylactic effects of Wormwood on lipid peroxidation in an animal model of lead intoxication.

The ability of Wormwood (Artemisia absinthium L.) extract (A.Ab) to restore membrane-bound enzymes like Na(+)-K(+)-ATPase, Ca(++)-ATPase, Mg(++)-ATPase, and oxidative damage induced by lead were investigated. Rats were exposed to lead acetate (750 ppm) for 11-weeks and treated during 4-weeks with A.Ab. Lipid levels, ATPase activity, thiobarbituric acid reactive substances (TBARS), and proteins carbonyl were estimated. In liver and kidney, lead acetate inhibited membrane-bound enzymes and increased (P < 0.05) the levels of cholesterol, triglycerides, free fatty acids, phospholipids, TBARS, and carbonyl proteins. After 4 weeks, the intoxicated group who received A.Ab showed a significant reduction in TBARS and carbonyl levels in liver and kidney compared to group exposed to lead. A.Ab restored the levels of membrane-bound enzymes and lipid levels to near normal. These results indicate that aqueous Wormwood extract had a significant antioxidant activity and protect liver and kidney from the lead-induced toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app