Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Removal of out-of-plane fluorescence for single cell visualization and quantification in cryo-imaging.

We developed a cryo-imaging system, which alternates between sectioning (10-40 microm) and imaging bright field and fluorescence block-face image volumes with micron-scale-resolution. For applications requiring single-cell detection of fluorescently labeled cells anywhere in a mouse, we are developing software for reduction of out-of-plane fluorescence. In mouse experiments, we imaged GFP-labeled cancer and stem cells, and cell-sized fluorescent microspheres. To remove out-of-plane fluorescence, we used a simplified model of light-tissue interaction whereby the next-image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing an objective function on subtracted images. Tissue-specific attenuation parameters [micro(T): heart (267 +/- 47.6 cm(-1)), liver (218 +/- 27.1 cm(-1)), brain (161 +/- 27.4 cm(-1))] were found to be within the range of estimates in the literature. "Next-image" processing removed out-of-plane fluorescence equally well across multiple tissues (brain, kidney, liver, etc.), and analysis of 200 microsphere images gave 97 +/- 2% reduction of out-of-plane fluorescence. Next-image processing greatly improved axial-resolution, enabled high quality 3D volume renderings, and improved automated enumeration of single cells by up to 24%. The method has been used to identify metastatic cancer sites, determine homing of stem cells to injury sites, and show microsphere distribution correlated with blood flow patterns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app