Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Silencing of Cav1.2 gene in neonatal cardiomyocytes by lentiviral delivered shRNA.

Cav1.2 (alpha1C) and Cav1.3 (alpha1D) L-type Ca channels are co-expressed in the heart. To date, there are no pharmacological or biophysical tools to separate alpha1D from alpha1C Ca currents (I(Ca-L)) in cardiomyocytes. Here, we established a physiological model to study alpha1D I(Ca-L) in native myocytes using RNA interference. Transfection of rat neonatal cardiomyocytes (RNC) with alpha1C specific siRNA resulted in low silencing efficiency (50-60%) at the mRNA and protein levels. The use of lentivirus shRNA resulted in 100% transfection efficiency and 92% silencing of the alpha1C gene by real-time PCR and Western blot. Electrophysiological experiments showed that the total I(Ca-L) was similarly reduced by 80% in lentivirus transfected cells. Both biochemical and functional data demonstrated high transfection and silencing efficiency in the cardiomyocytes using lentiviral shRNA. This novel approach allows for the assessments of the roles of alpha1C and alpha1D Ca channels in native myocytes and could be used to examine their roles in physiological and pathological settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app