Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Repeated application of incremental landing impact loads to intact knee joints induces anterior cruciate ligament failure and tibiofemoral cartilage deformation and damage: A preliminary cadaveric investigation.

Anterior cruciate ligament (ACL) injury is a major problem worldwide and prevails during high-impact activities. It is not well-understood how the extent and distribution of cartilage damage will arise from repetitive landing impact loads that can lead to ACL failure. This study seeks to investigate the sole effect of repetitive incremental landing impact loads on the induction of ACL failure, and extent and distribution of tibiofemoral cartilage damage in cadaveric knees. Five cadaveric knees were mounted onto a material testing system at 70 degrees flexion to simulate landing posture. A motion-capture system was used to track rotational and translational motions of the tibia and femur, respectively. Each specimen was compressed at a single 10Hz haversine to simulate landing impact. The compression trial was successively repeated with increasing actuator displacement till a significant compressive force drop was observed. All specimens underwent ACL failure, which was confirmed via magnetic resonance scans and dissection. Volume analysis, thickness measurement and histological techniques were employed to assess cartilage lesion status. For each specimen, the highest peak compressive force (1.9-7.8kN) was at the final trial in which ACL failure occurred; corresponding posterior femoral displacement (7.6-18.0mm) and internal tibial rotation (0.6 degrees -4.7 degrees ) were observed. Significant compressive force drop (79.8-90.9%) was noted upon ACL failure. Considerable cartilage deformation and damage were found in exterior, posterior and interior femoral regions with substantial volume reduction in lateral compartments. Repeated application of incremental landing impact loads can induce both ACL failure and cartilage damage, which may accelerate the risk of developing osteoarthritis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app