Add like
Add dislike
Add to saved papers

Neurotransmitter-mediated changes in the electrophysiological properties of pituicytes.

Abstract Intracellular recordings were obtained from pituicytes in the neural lobe of the isolated rat pituitary. Like other glia, pituicytes lacked action potentials in response to depolarizing current injection, but they tended to have more positive resting membrane potentials and higher input resistances than astrocytes in other preparations. Dye-coupling typical of astrocytes was also demonstrated amongst pituicytes, and their morphologies were similar to those of pituicytes stained for glial fibrillary acidic protein. Action potentials, anode-break spikes or barium spikes were not observed in pituicytes, even under conditions that maximized the elicitation of Ca(2+)-dependent responses. This suggests that pituicytes either have no or a very low density of Ca(2+) channels or Ca(2+) currents that are too small to generate action potentials. Dynorphin A (1-13), a kappa-opioid agonist, produced long-lasting increases in pituicyte input resistance with no significant changes in resting membrane potential. Dynorphin's action was concentration-dependent and was blocked by the opioid antagonist naloxone. This is consistent with previous reports demonstrating kappa-opioid receptors on pituicytes in the neurohypophysis. The beta-adrenergic agonist isoproterenol (100 muM) reversed the increases in pituicyte input resistance produced by opioid application, with no significant changes in resting membrane potential. The fact that pituicytes responded to neurotransmitters suggests a functional link between pituicytes and neurosecretory nerve fibres.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app