Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Partial oxidation ("aging") and surface modification decrease the toxicity of nanosized zerovalent iron.

Nanoscale zero-valent iron (nZVI) is a "redox"-active nanomaterial used in the remediation of contaminated groundwater. To assess the effect of "aging" and surface modification on its potential neurotoxicity, cultured rodent microglia (BV2) and neurons (N27) were exposed to fresh nZVI, "aged" (>11 months) nZVI, magnetite, and polyaspartate surface-modified (SM) nZVI. Increases in various measures of oxidative stress indicated that BV2 microglia responded to these materials in the following rank order: nZVI > "aged" nZVI > magnetite = SM nZVI. Fresh nZVI produced morphological evidence of mitochondrial swelling and apoptosis. In N27 neurons, ATP levels were reduced in the following rank order: nZVI > SM-nZVI > "aged" nZVI = magnetite. Ultrastructurally, nZVI produced a perinuclear floccular material and cytoplasmic granularity. Both SM-nZVI produced intracellular deposits of nanosize particles in the N27. The physicochemical properties of each material, measured under exposure conditions, indicated that all had electronegative zeta potentials. The iron content of nZVI (approximately 35%) and SM-nZVI (approximately 25%) indicated high "redox" activity while that of "aged" and magnetite was neglibile. Sedimentation and agglomeration occurred in the following rank order: nZV > "aged" nZVI > magnetite > SM-nZVI. Correlating these properties with toxicity indicated that partial or complete oxidation of nZVI reduced its "redox" activity, agglomeration, sedimentation rate, and toxicity to mammalian cells. Surface modification decreased nZVI toxicity by reducing sedimentation which limited particle exposure to the cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app