Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Detection of a thalassemic alpha-chain variant (Hemoglobin Groene Hart) by reversed-phase liquid chromatography.

BACKGROUND: Hemoglobin (Hb) Groene Hart [alpha119 (H2)Pro-->Ser (alpha1)], also known as Hb Bernalda, is a nondeletional alpha-thalassemic Hb variant that is frequent in southern Italy and North Africa. This variant is not supposed to be produced in the erythrocytes of carriers. The alpha-thalassemic behavior of this variant has been explained as an impaired interaction between the alpha-globin chain and the alpha-Hb-stabilizing protein.

METHODS: To separate globin chains, we developed a modified reversed-phase liquid chromatography (RPLC) procedure that uses acetonitrile-water solvents containing up to 3 mL/L trifluoroacetic acid. After RPLC, we characterized the isolated globin chains by electrospray ionization (ESI) mass spectrometry (MS) and analyzed their tryptic peptides with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS and nano-LC-ESI-MS/MS.

RESULTS: RPLC detected an abnormal peak with a retention time substantially greater than that of the wild-type alpha(A)-globin chain. We identified this variant as Hb Groene Hart and found it in the hemolysates of 11 unrelated patients (1 homozygote, 9 heterozygotes, and 1 heterozygote associated with the -alpha(3.7) deletion). These patients possessed abnormal hematologic features suggesting an alpha-thalassemia phenotype. Molecular modeling suggested that the increase in hydrophobicity was due to opening of the GH interhelical segment following replacement of amino acid residue 119 with a nonhelix breaker residue.

CONCLUSIONS: This method allows the detection of Hb variants at low concentrations, and adjusting the composition of the organic solvents enables the method to identify Hb variants with large changes in hydrophobicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app