Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Development of a virus-induced gene-silencing system for functional analysis of the RPS2-dependent resistance signalling pathways in Arabidopsis.

Virus-induced gene silencing (VIGS) offers a rapid and high throughput technique platform for the analysis of gene function in plants. Although routinely used in some Solanaceous species, VIGS system has not been well established in Arabidopsis thaliana (L.) Heynh. We have recently reported some factors that potentially influence tobacco rattle virus (TRV)-mediated VIGS of phytoene desaturase (PDS) and actin gene expression in Arabidopsis. In this study, we have further established that the Agrobacterium strain used for agro-inoculation significantly affects the VIGS efficiency. Strain GV3101 was highly effective; C58C1 and LBA4404 were invalid, while EHA105 was plant growth stage-dependent for TRV-induced gene silencing. Furthermore, the VIGS procedure optimised for the PDS gene was applied for the functional analysis of the disease resistance gene RPS2-mediated resistance pathway. Silencing of RPS2 led to loss of resistance to the otherwise avirulence strain of Pseudomonas syringae pv. tomato DC3000 carrying the avirulence gene AvrRpt2. Silencing of RIN4, a RPS2 repressor gene, gave rise to conversion of compatible interaction to incompatible. Silencing of NDR1, RAR1 and HSP90, known to be required for the RPS2-mediated resistance, resulted in loss of the resistance, while silencing of EDS1 and SGT1b, which are not required for the RPS2-mediated resistance, caused no change of the resistance. These results indicate that the optimised procedure for the TRV-based VIGS is a potentially powerful tool for dissecting the signal transduction pathways of disease resistance in Arabidopsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app