Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

q-Space analysis of lung morphometry in vivo with hyperpolarized 3He spectroscopy.

PURPOSE: To examine the utility of a (3)He spectroscopic q-space technique for detecting changes in lung morphometry in vivo.

MATERIALS AND METHODS: A diffusion-weighted spectroscopy sequence was used to collect global diffusion data from healthy adults (N = 11), healthy children (N = 5), and chronic obstructive pulmonary disease (COPD) patients (N = 2) using 40 cc of hyperpolarized (3)He gas within a two second breathhold. Displacement probability profiles (DPP) were obtained by Fourier transformation of diffusion data with respect to q. A bi-Gaussian model was used to decompose the DPPs into narrow and broad components, characterized by root-mean-square displacements X(rms1) and X(rms2), respectively.

RESULTS: In healthy adults, the narrow component (X(rms,1)) of the DPP had a mean displacement of 188 +/- 10 microm, slightly less than the reported average size of the alveoli. The broad component (X(rms,2)) had a mean value of 474 +/- 44 microm, comparable to the diameter of the respiratory bronchioles in the acinus. In children, both X(rms1) (167 +/- 4 microm) and X(rms2) (382 +/- 22 microm) compared to healthy adults (P < 0.01). In COPD patients, the mean displacements were elevated (X(rms1): 265 +/- 71 microm; X(rms2): 530 +/- 109 microm) compared to healthy adults. Excellent correlation was found between rms displacements and age (age vs. X(rms,1): r = 0.78, P < 0.001; age vs. X(rms,2): r = 0.90, P < 0.001).

CONCLUSION: The q-space parameters agreed remarkably well with published alveolar morphometry data. The results suggest that the technique may be sensitive to disease, as evident from the elevated mean displacements in COPD patients compared to healthy volunteers. Detailed lung microstructural information can be obtained using a very low volume of inhaled (3)He.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app