English Abstract
Journal Article
Review
Add like
Add dislike
Add to saved papers

[Experimental models of insulin resistance and obesity: lessons learned].

For better understanding the role of each element involved in the physiopathology of obesity and insulin resistance, researchers can use experimental models, which may in controlled manner evaluate the participation of each element on the obesity and insulin resistance and provide information for better understanding the physiopathology and treatment of obesity and insulin resistance. Experimental obesity and insulin resistance can be due to a deficient response to leptin, secondary to hypoleptinemia and/or mutations on leptin receptor, by modifications on insulin receptor, deletion or diminished insulin signal transduction, enhancement of the effects of orexigen peptides and/or diminution of anorexigen peptides actions on hypothalamus, as well as secondary to arterial hypertension, as in the spontaneously hypertension. Obesity and insulin resistance can also be induced by glucocorticoid excess, frutose enriched and cafeteria diet and due to hypothalamus lesions induced by neonatal administration of monossodium glutamate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app