Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Homocysteine transport by human aortic endothelial cells: identification and properties of import systems.

Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. Transport of L-homocysteine into and out of the human vascular endothelium is poorly understood. We hypothesized that cultured human aortic endothelial cells (HAEC) would import L-homocysteine on one or more of the L-cysteine transport systems. Inhibitors of the transporters were used to characterize the uptake of [35S]L-homocysteine, [35S]L-homocystine, and [35S]L-cysteine. We found that L-homocysteine uptake is mediated by the sodium-dependent cysteine transport systems X(AG), ASC, and A, and the sodium-independent transport system L. Thus, HAEC utilize multiple cysteine transporters (X(AG) > or = L > ASC > A) to import L-homocysteine. Kinetic analysis supported the uptake results. Michaelis-Menten constants (Km) for the four systems yielded values of 19.0, 27.1, 112, and 1000 microM for systems L, X(AG), ASC, and A, respectively. The binding and uptake of [35S]L-homocystine, the disulfide homodimer of L-homocysteine, was mediated by systems X(AG), L, and ASC but not by system A. In contrast to [35S]L-homocysteine, system x(c) was active for [35S]L-homocystine uptake. A similar pattern was observed for [35S]L-cysteine. Thus, L-homocysteine and L-homocystine found in hyperhomocysteinemic subjects can gain entry into the vascular endothelium by way of multiple L-cysteine transporters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app