Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Identification of a functional vitamin D response element in the murine Insig-2 promoter and its potential role in the differentiation of 3T3-L1 preadipocytes.

Insulin-induced gene-1 (Insig-1) and its homolog Insig-2 encode closely related proteins of the endoplasmic reticulum that block proteolytic activation of sterol regulatory element binding proteins, membrane-bound transcription factors that activate synthesis of cholesterol and fatty acids in animal cells. These proteins also restrict lipogenesis in mature adipocytes and block differentiation of preadipocytes. Herein, we identified a novel 1alpha,25-dihydroxyvitamin D3 [1,25-(OH)2D3] response element in the promoter region of Insig-2 gene, which specifically binds to the heterodimer of retinoid X receptor and vitamin D receptor (VDR) and directs VDR-mediated transcriptional activation in a 1,25-(OH)2D3-dependent manner. Interestingly, 1,25-(OH)2D3 is known to directly suppress the expression of peroxisome proliferator-activated receptor gamma2 protein and inhibits adipocyte differentiation of 3T3-L1 preadipocytes and murine bone marrow stromal cells. Consistent with an idea that the antiadipogenic action of 1,25-(OH)2D3 may also involve up-regulation of Insig-2, we found that 1,25-(OH)2D3 transiently but strongly induces Insig-2 expression in 3T3-L1 cells. This novel regulatory circuit may also play important roles in other lipogenic cell types that express VDR, and collectively our results suggest an intriguing, new linkage between 1,25-(OH)2D3 and lipogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app