Add like
Add dislike
Add to saved papers

A human antibody that promotes remyelination enters the CNS and decreases lesion load as detected by T2-weighted spinal cord MRI in a virus-induced murine model of MS.

The human monoclonal antibody rHIgM22 enhances remyelination following spinal cord demyelination in a virus-induced murine model of multiple sclerosis. Using three-dimensional T2-weighted in vivo spinal cord magnetic resonance imaging (MRI), we have therefore assessed the extent of spinal cord demyelination, before and after 5 weeks of treatment with rHIgM22, to determine whether antibody enhanced remyelination can be detected by MRI. A significant decrease was seen in T2 high signal lesion volume following antibody treatment. Histologic examination of the spinal cord tissue reveals that this decrease in lesion volume correlates with antibody promoted remyelination. To show that rHIgM22 enters the spinal cord and colocalizes with demyelinating lesions, we used ultrasmall superparamagnetic iron oxide particle (USPIO)-labeled antibodies. This may be considered as additional evidence to the hypothesis that rHIgM22 promotes remyelination by local effects in the lesions, likely by binding to CNS cells. The reduction in high signal T2-weighted lesion volume may be an important outcome measure in future clinical trials in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app