Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cytokine-induced enhancement of autoimmune inflammation in the brain and spinal cord: implications for multiple sclerosis.

UNLABELLED: Multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) are autoimmune inflammatory diseases in which cytokines are intimately involved. Here we test the hypothesis that injection of pro-inflammatory cytokines, tumour necrosis factor-alpha (TNFalpha) and interferon gamma (IFNgamma) into the brain of animals in the prodromal phase of EAE significantly enhances inflammation in the central nervous system (CNS). We were particularly interested to learn whether a local increase in cytokines influenced the pathology locally, or more extensively, within the CNS. EAE was induced in female adult Lewis rats. Eight days post-inoculation, TNFalpha or INFgamma was injected into one cerebral hemisphere. Days 11 and 13 post-inoculation (3 and 5 days after the injection of cytokine) inflammation was quantified by the number of perivascular cuffs and the degree of major histocompatibility complex (MHC) class II expression by microglia. Normal animals injected with cytokines, and EAE animals with saline injection served as controls.

RESULTS: microglial activation was increased three- to fourfold in the brain and eightfold in the spinal cord (P
CONCLUSION: local changes in the release of pro-inflammatory cytokines within the brain in EAE results in the widespread enhancement of autoimmune inflammation within the brain and cord, and exacerbation of clinical symptoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app