Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Strong ions, weak acids and base excess: a simplified Fencl-Stewart approach to clinical acid-base disorders.

BACKGROUND: The Fencl-Stewart approach to acid-base disorders uses five equations of varying complexity to estimate the base excess effects of the important components: the strong ion difference (sodium and chloride), the total weak acid concentration (albumin) and unmeasured ions. Although this approach is straightforward, most people would need a calculator to use the equations. We proposed four simpler equations that require only mental arithmetic and tested the hypothesis that these simpler equations would have good agreement with more complex Fencl-Stewart equations.

METHODS: We reduced two complex equations for the sodium-chloride effect on base excess to one simple equation: sodium-chloride effect (meq litre(-1))=[Na(+)]-[Cl(-)]-38. We simplified the equation of the albumin effect on base excess to an equation with two constants: albumin effect (meq litre(-1))=0.25x(42-[albumin]g litre(-1)). Using 300 blood samples from critically ill patients, we examined the agreement between the more complex Fencl-Stewart equations and our simplified versions with Bland-Altman analyses.

RESULTS: The estimates of the sodium-chloride effect on base excess agreed well, with no bias and limits of agreement of -0.5 to 0.5 meq litre(-1). The albumin effect estimates required log transformation. The simplified estimate was, on average, 90% of the Fencl-Stewart estimate. The limits of agreement for this percentage were 82-98%.

CONCLUSIONS: The simplified equations agree well with the previous, more complex equations. Our findings suggest a useful, simple way to use the Fencl-Stewart approach to analyse acid-base disorders in clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app