keyword
MENU ▼
Read by QxMD icon Read
search

Meniscal regeneration

keyword
https://www.readbyqxmd.com/read/28622089/large-animal-models-of-meniscus-repair-and-regeneration-a-systematic-review-of-the-state-of-the-field
#1
Sonia Bansal, Niobra M Keah, Alexander L Neuwirth, Olivia O'Reilly, Feini Qu, Breanna Seiber, Sai Mandalapu, Robert Leon Mauck, Miltiadis Zgonis
Injury to the meniscus is common but few viable strategies exist for its repair or regeneration. To address this, animal models have been developed to translate new treatment strategies towards the clinic. However, there is not yet a regulatory document guiding such studies. The purpose of this study was to carry out a systematic review of the literature on meniscus treatment methods and outcomes to define the state of the field. Public databases were queried using search terms related to animal models and meniscus injury and/or repair over the years 1980-2015...
June 16, 2017: Tissue Engineering. Part C, Methods
https://www.readbyqxmd.com/read/28610487/establishment-of-novel-meniscal-scaffold-structures-using-polyglycolic-and-poly-l-lactic-acids
#2
Tomohiko Murakami, Shuhei Otsuki, Kosuke Nakagawa, Yoshinori Okamoto, Tae Inoue, Yuki Sakamoto, Hideki Sato, Masashi Neo
The purpose of this study was to evaluate various types of meniscus scaffolds that mimic the meniscus structure, and to establish a novel cell-free meniscus scaffold with polyglycolic acid or poly-l-lactic acid. Four types of scaffolds were implanted into Japanese white rabbits: poly-l-lactic acid sponge poly-l-lactic acid, PGA-coated PLLA sponge, PGA lamination, and film-coated PGA lamination. Samples were harvested at 8 and 12 weeks after implantation, and a compression stress test was performed. The meniscus size and Ishida scores were evaluated for regenerated tissue...
January 1, 2017: Journal of Biomaterials Applications
https://www.readbyqxmd.com/read/28598834/do-cell-based-tissue-engineering-products-for-meniscus-regeneration-influence-vascularization
#3
Matthias Koch, Tobias Ehrenreich, Gudrun Koehl, Girish Pattappa, Christian Pfeifer, Markus Loibl, Michael Müller, Michael Nerlich, Peter Angele, Johannes Zellner
BACKGROUND: Meniscus regeneration is observed within the peripheral, vascularized zone but decreases in the inner two thirds alongside the vascularization. Within this avascular area, cell-based tissue-engineering-approaches appears to be a promising strategy for the treatment of meniscal defects. OBJECTIVE: Evaluation of the angiogenic potential of cell-based tissue-engineering-products for meniscus healing. METHODS: Evaluation of angiogenesis induced by rabbit meniscus-pellets, meniscus-cells (MC) or mesenchymal stem-cells (MSC) in cell-based tissue-engineering-products within a rabbit meniscus-ring was performed using a transparent dorsal skin fold chamber in nude mice...
June 7, 2017: Clinical Hemorheology and Microcirculation
https://www.readbyqxmd.com/read/28511649/il-10-ameliorates-tnf-%C3%AE-induced-meniscus-degeneration-in-mature-meniscal-tissue-in-vitro
#4
P Behrendt, K Häfelein, A Preusse-Prange, A Bayer, A Seekamp, B Kurz
BACKGROUND: Joint inflammation causes meniscus degeneration and can exacerbate post-traumatic meniscus injuries by extracellular matrix degradation, cellular de-differentiation and cell death. The aim of this study was to examine whether anti-inflammatory interleukin-10 exerts protective effects in an in vitro model of TNF-α-induced meniscus degeneration. METHODS: Meniscus tissue was harvested from the knees of adult cows. After 24 h of equilibrium explants were simultaneously treated with bovine TNF-α and IL-10...
May 16, 2017: BMC Musculoskeletal Disorders
https://www.readbyqxmd.com/read/28463545/meniscal-tissue-engineering-using-aligned-collagen-fibrous-scaffolds-comparison-of-different-human-cell-sources
#5
Jihye Baek, Sujata Sovani, Wonchul Choi, Sungho Jin, Shawn P Grogan, Darryl D D'Lima
Hydrogel and electrospun scaffold materials support cell attachment and neotissue development and can be tuned to structurally and mechanically resemble native extracellular matrix by altering either electrospun fiber or hydrogel properties. In this study, we examined meniscus tissue generation from different human cell sources including meniscus cells derived from vascular and avascular regions, human bone marrow-derived mesenchymal stem cells, synovial cells, and cells from the infrapatellar fat pad (IPFP)...
June 13, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28407495/stem-cell-delivery-in-tissue-specific-hydrogel-enabled-meniscal-repair-in-an-orthotopic-rat-model
#6
Xiaoning Yuan, Yiyong Wei, Aránzazu Villasante, Johnathan J D Ng, Derya E Arkonac, Pen-Hsiu Grace Chao, Gordana Vunjak-Novakovic
Interest in non-invasive injectable therapies has rapidly risen due to their excellent safety profile and ease of use in clinical settings. Injectable hydrogels can be derived from the extracellular matrix (ECM) of specific tissues to provide a biomimetic environment for cell delivery and enable seamless regeneration of tissue defects. We investigated the in situ delivery of human mesenchymal stem cells (hMSCs) in decellularized meniscus ECM hydrogel to a meniscal defect in a nude rat model. First, decellularized meniscus ECM hydrogel retained tissue-specific proteoglycans and collagens, and significantly upregulated expression of fibrochondrogenic markers by hMSCs versus collagen hydrogel alone in vitro...
July 2017: Biomaterials
https://www.readbyqxmd.com/read/28321424/cell-based-meniscus-repair-and-regeneration-at-the-brink-of-clinical-translation-a-systematic-review-of-preclinical-studies
#7
Jasmijn V Korpershoek, Tommy S de Windt, Michella H Hagmeijer, Lucienne A Vonk, Daniel B F Saris
BACKGROUND: Meniscus damage can be caused by trauma or degeneration and is therefore common among patients of all ages. Repair or regeneration of the menisci could be of great importance not only for pain relief or regaining function but also to prevent degenerative disease and osteoarthritis. Current treatment does not offer consistent long-term improvement. Although preclinical research focusing on augmentation of meniscal tear repair and regeneration after meniscectomy is encouraging, clinical translation remains difficult...
February 2017: Orthopaedic Journal of Sports Medicine
https://www.readbyqxmd.com/read/28278383/3d-printed-poly-%C3%AE%C2%B5-caprolactone-scaffold-augmented-with-mesenchymal-stem-cells-for-total-meniscal-substitution-a-12-and-24-week-animal-study-in-a-rabbit-model
#8
Zheng-Zheng Zhang, Shao-Jie Wang, Ji-Ying Zhang, Wen-Bo Jiang, Ai-Bing Huang, Yan-Song Qi, Jian-Xun Ding, Xue-Si Chen, Dong Jiang, Jia-Kuo Yu
BACKGROUND: Total meniscectomy leads to knee osteoarthritis in the long term. The poly(ε-caprolactone) (PCL) scaffold is a promising material for meniscal tissue regeneration, but cell-free scaffolds result in relatively poor tissue regeneration and lead to joint degeneration. HYPOTHESIS: A novel, 3-dimensional (3D)-printed PCL scaffold augmented with mesenchymal stem cells (MSCs) would offer benefits in meniscal regeneration and cartilage protection. STUDY DESIGN: Controlled laboratory study...
June 2017: American Journal of Sports Medicine
https://www.readbyqxmd.com/read/28242455/micromechanical-anisotropy-and-heterogeneity-of-the-meniscus-extracellular-matrix
#9
Qing Li, Feini Qu, Biao Han, Chao Wang, Hao Li, Robert L Mauck, Lin Han
To understand how the complex biomechanical functions of the meniscus are endowed by the nanostructure of its extracellular matrix (ECM), we studied the anisotropy and heterogeneity in the micromechanical properties of the meniscus ECM. We used atomic force microscopy (AFM) to quantify the time-dependent mechanical properties of juvenile bovine meniscus at deformation length scales corresponding to the diameters of collagen fibrils. At this scale, anisotropy in the elastic modulus of the circumferential fibers, the major ECM structural unit, can be attributed to differences in fibril deformation modes: uncrimping when normal to the fiber axis, and laterally constrained compression when parallel to the fiber axis...
May 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28203596/intra-articular-implantation-of-mesenchymal-stem-cells-part-2-a-review-of-the-literature-for-meniscal-regeneration
#10
Matthew J Kraeutler, Justin J Mitchell, Jorge Chahla, Eric C McCarty, Cecilia Pascual-Garrido
Knee osteoarthritis (OA) after partial or total meniscectomy is a prevalent issue that patients must face. Various methods of replacing meniscal tissue have been studied to avoid this progression, including meniscal allograft transplantation, meniscal scaffolds, and synthetic meniscus replacement. Studies have shown that meniscal scaffolds may improve symptoms but have not been shown to prevent progression of OA. Recently, mesenchymal stem cells (MSCs) have been proposed as a possible biological therapy for meniscal regeneration...
January 2017: Orthopaedic Journal of Sports Medicine
https://www.readbyqxmd.com/read/28169595/tissue-derived-extracellular-matrix-bioscaffolds-emerging-applications-in-cartilage-and-meniscus-repair
#11
Farrah A Monibi, James L Cook
Musculoskeletal injuries are a common problem in orthopedic practice. Given the long-term consequences of unaddressed cartilage and meniscal pathology, a number of treatments have been attempted to stimulate repair or to replace the injured tissue. Despite advances in orthopedic surgery, effective treatments for cartilage and meniscus injuries remain a significant clinical challenge. Tissue engineering is a developing field that aims to regenerate injured tissues with a combination of cells, scaffolds, and signals...
March 7, 2017: Tissue Engineering. Part B, Reviews
https://www.readbyqxmd.com/read/28165810/the-origin-and-distribution-of-cd68-cd163-and-%C3%AE-sma-cells-in-the-early-phase-after-meniscal-resection-in-a-parabiotic-rat-model
#12
Shozaburo Terai, Yusuke Hashimoto, Kumi Orita, Shinya Yamasaki, Junsei Takigami, Takafumi Shinkuma, Takanori Teraoka, Yohei Nishida, Masafumi Takahashi, Hiroaki Nakamura
We previously reported that circulating peripheral blood-borne cells (PBCs) contribute to early-phase meniscal reparative change. Because macrophages and myofibroblasts are important contributors of tissue regeneration, we examined their origin and distribution in the reparative meniscus. Reparative menisci were evaluated at 1, 2, and 4 weeks post-meniscectomy by immunohistochemistry to locate monocytes and macrophages (stained positive for CD68 and CD163), and myofibroblasts (stained positive for αSMA). Of the total number of cells, 13% were CD68(+) at 1 week post-meniscectomy, which decreased to 1% by 4 weeks post-meniscectomy; of these, almost half of CD68(+) cells (49...
February 6, 2017: Connective Tissue Research
https://www.readbyqxmd.com/read/28161573/chondrogenically-primed-tonsil-derived-mesenchymal-stem-cells-encapsulated-in-riboflavin-induced-photocrosslinking-collagen-hyaluronic-acid-hydrogel-for-meniscus-tissue-repairs
#13
Rachel H Koh, Yinji Jin, Byung-Jae Kang, Nathaniel S Hwang
Current meniscus tissue repairing strategies involve partial or total meniscectomy, followed by allograft transplantation or synthetic material implantation. However, allografts and synthetic implants have major drawbacks such as the limited supply of grafts and lack of integration into host tissue, respectively. In this study, we investigated the effects of conditioned medium (CM) from meniscal fibrochondrocytes and TGF-β3 on tonsil-derived mesenchymal stem cells (T-MSCs) for meniscus tissue engineering. CM-expanded T-MSCs were encapsulated in riboflavin-induced photocrosslinked collagen-hyaluronic acid (COL-RF-HA) hydrogels and cultured in chondrogenic medium containing TGF-β3...
February 1, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28051883/hydrogels-for-precision-meniscus-tissue-engineering-a-comprehensive-review
#14
Ana Rey-Rico, Magali Cucchiarini, Henning Madry
The meniscus plays a pivotal role to preserve the knee joint homeostasis. Lesions to the meniscus are frequent, have a reduced ability to heal, and may induce tibiofemoral osteoarthritis. Current reconstructive therapeutic options mainly focus on the treatment of lesions in the peripheral vascularized region. In contrast, few approaches are capable of stimulating repair of damaged meniscal tissue in the central, avascular portion. Tissue engineering approaches are of high interest to repair or replace damaged meniscus tissue in this area...
January 4, 2017: Connective Tissue Research
https://www.readbyqxmd.com/read/28002904/the-meniscus-vascularization-the-direct-correlation-with-tissue-composition-for-tissue-engineering-purposes
#15
A Di Giancamillo, L Mangiavini, I Tessaro, A Marmotti, R Scurati, G M Peretti
Meniscal lesions still represent an unsolved problem in clinical practice. Like the articular cartilage, meniscus has a scarce healing potential. Thus, when this tissue is damaged, the joint biomechanics is completely altered, leading to the development and progression of premature osteoarthritis. Therefore, in the last years, several tissue-engineering strategies have been developed to regenerate the meniscus with debated results. The comprehension of complex processes underlying meniscus maturation and structure is essential for a correct approach for the generation of a biomimetic meniscal substitute...
October 2016: Journal of Biological Regulators and Homeostatic Agents
https://www.readbyqxmd.com/read/27824291/development-of-a-micronized-meniscus-extracellular-matrix-scaffold-for-potential-augmentation-of-meniscal-repair-and-regeneration
#16
Farrah A Monibi, Chantelle C Bozynski, Keiichi Kuroki, Aaron M Stoker, Ferris M Pfeiffer, Seth L Sherman, James L Cook
Decellularized scaffolds composed of extracellular matrix (ECM) hold promise for repair and regeneration of the meniscus, given the potential for ECM-based biomaterials to aid in stem cell recruitment, infiltration, and differentiation. The objectives of this study were to decellularize canine menisci to fabricate a micronized, ECM-derived scaffold and to determine the cytocompatibility and repair potential of the scaffold ex vivo. Menisci were decellularized with a combination of physical agitation and chemical treatments...
December 2016: Tissue Engineering. Part C, Methods
https://www.readbyqxmd.com/read/27805288/meniscal-regeneration-after-resection-of-the-anterior-half-of-the-medial-meniscus-in-mice
#17
Kanehiro Hiyama, Takeshi Muneta, Hideyuki Koga, Ichiro Sekiya, Kunikazu Tsuji
Various animal studies have indicated that reduced meniscal function significantly exacerbates articular-cartilage degeneration. Despite the importance of meniscal function for joint homeostasis and prevention of osteoarthritis, the healing process after meniscal injury and the regenerative process after meniscus removal have not been studied in detail. In this study, we examined the process of meniscal regeneration and cartilage degeneration after meniscectomy in mice. The left anterior halves of the medial menisci in male C57Bl/6J mice were resected, and histological assessment of the process of meniscal regeneration was conducted on day 3 and 2, 4, and 6 weeks after the surgical procedure...
November 2, 2016: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society
https://www.readbyqxmd.com/read/27664939/formation-and-maturation-of-the-murine-meniscus
#18
Laura W Gamer, Lin Xiang, Vicki Rosen
Meniscal injuries are commonplace, but current surgical repair procedures do not prevent degenerative joint changes that occur after meniscal injury and often lead to osteoarthritis. Successful tissue regeneration in adults often recapitulates events that occur during embryogenesis, suggesting that understanding the regulatory pathways controlling these early processes may provide clues for developing strategies for tissue repair. While the mouse is now widely used to study joint diseases, detailed knowledge of the basic biology of murine meniscus is not readily available...
September 24, 2016: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society
https://www.readbyqxmd.com/read/27347833/assessment-of-regeneration-in-meniscal-lesions-by-use-of-mesenchymal-stem-cells-derived-from-equine-bone-marrow-and-adipose-tissue
#19
Maria L González-Fernández, Saúl Pérez-Castrillo, Jaime A Sánchez-Lázaro, Julio G Prieto-Fernández, Maria E López-González, Sandra Lobato-Pérez, Bruno J Colaço, Elías R Olivera, Vega Villar-Suárez
OBJECTIVE To assess the ability to regenerate an equine meniscus by use of a collagen repair patch (scaffold) seeded with mesenchymal stem cells (MSCs) derived from bone marrow (BM) or adipose tissue (AT). SAMPLE 6 female Hispano-Breton horses between 4 and 7 years of age; MSCs from BM and AT were obtained for the in vitro experiment, and the horses were subsequently used for the in vivo experiment. PROCEDURES Similarities and differences between MSCs derived from BM or AT were investigated in vitro by use of cell culture...
July 2016: American Journal of Veterinary Research
https://www.readbyqxmd.com/read/27347022/osteoarthritis-prevention-and-meniscus-regeneration-induced-by-transplantation-of-mesenchymal-stem-cell-sheet-in-a-rat-meniscal-defect-model
#20
Yiying Qi, Guangnan Chen, Gang Feng
Transplantation of mesenchymal stem cells (MSCs) is a potential therapy for meniscus regeneration. However, when using single cell suspension injection, there is frequently a significant loss of cells, with only a small percentage of cells remaining at the target site. This issue may be solved with the use of MSC sheets. In the present study, we investigated whether the use of MSC sheets were able to regenerate the meniscus effectively in a rat meniscectomized model. The anterior half of the medial meniscus in 10 rats was excised and an MSC sheet was transplanted in the MSC sheet treatment group, while untreated rats served as the control...
July 2016: Experimental and Therapeutic Medicine
keyword
keyword
97543
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"