keyword
MENU ▼
Read by QxMD icon Read
search

Drosophila neural circuitry

keyword
https://www.readbyqxmd.com/read/29133872/the-core-promoter-factor-trf2-mediates-a-fruitless-action-to-masculinize-neurobehavioral-traits-in-drosophila
#1
Zahid Sadek Chowdhury, Kosei Sato, Daisuke Yamamoto
In fruit flies, the male-specific fruitless (fru) gene product FruBM plays a central role in establishing the neural circuitry for male courtship behavior by orchestrating the transcription of genes required for the male-type specification of individual neurons. We herein identify the core promoter recognition factor gene Trf2 as a dominant modifier of fru actions. Trf2 knockdown in the sexually dimorphic mAL neurons leads to the loss of a male-specific neurite and a reduction in male courtship vigor. TRF2 forms a repressor complex with FruBM, strongly enhancing the repressor activity of FruBM at the promoter region of the robo1 gene, whose function is required for inhibiting the male-specific neurite formation...
November 14, 2017: Nature Communications
https://www.readbyqxmd.com/read/29112868/drosophila-connectomics-mapping-the-larval-eye-s%C3%A2-mind
#2
Carl Friedrich-Reed Wienecke, Thomas R Clandinin
A new study has mapped the connectome - the shapes and connections of all the neurons- of the visual system of a Drosophila larva, providing a structural basis for understanding the neural circuitry of larval vision.
November 6, 2017: Current Biology: CB
https://www.readbyqxmd.com/read/29109241/optogenetic-activation-of-the-fruitless-labeled-circuitry-in-drosophila-subobscura-males-induces-mating-motor-acts
#3
Ryoya Tanaka, Tomohiro Higuchi, Soh Kohatsu, Kosei Sato, Daisuke Yamamoto
It remains an enigma how the nervous system of different animal species produces different behaviors. We studied the neural circuitry for mating behavior in Drosophila subobscura, a species that displays unique courtship actions not shared by other members of the genera including the genetic model D. melanogaster, in which the core courtship circuitry has been identified. We disrupted the D. subobscurafruitless (fru) gene, a master regulator for the courtship circuitry formation in D. melanogaster, resulting in complete loss of mating behavior...
November 6, 2017: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
https://www.readbyqxmd.com/read/28961025/generation-and-evolution-of-neural-cell-types-and-circuits-insights-from-the-drosophila-visual-system
#4
Michael Perry, Nikos Konstantinides, Filipe Pinto-Teixeira, Claude Desplan
The Drosophila visual system has become a premier model for probing how neural diversity is generated during development. Recent work has provided deeper insight into the elaborate mechanisms that control the range of types and numbers of neurons produced, which neurons survive, and how they interact. These processes drive visual function and influence behavioral preferences. Other studies are beginning to provide insight into how neuronal diversity evolved in insects by adding new cell types and modifying neural circuits...
November 27, 2017: Annual Review of Genetics
https://www.readbyqxmd.com/read/28893998/engineering-a-light-activated-caspase-3-for-precise-ablation-of-neurons-in-vivo
#5
Ashley D Smart, Roland A Pache, Nathan D Thomsen, Tanja Kortemme, Graeme W Davis, James A Wells
The circuitry of the brain is characterized by cell heterogeneity, sprawling cellular anatomy, and astonishingly complex patterns of connectivity. Determining how complex neural circuits control behavior is a major challenge that is often approached using surgical, chemical, or transgenic approaches to ablate neurons. However, all these approaches suffer from a lack of precise spatial and temporal control. This drawback would be overcome if cellular ablation could be controlled with light. Cells are naturally and cleanly ablated through apoptosis due to the terminal activation of caspases...
September 26, 2017: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/28803873/neural-circuitry-that-evokes-escape-behavior-upon-activation-of-nociceptive-sensory-neurons-in-drosophila-larvae
#6
Jiro Yoshino, Rei K Morikawa, Eri Hasegawa, Kazuo Emoto
Noxious stimuli trigger a stereotyped escape response in animals. In Drosophila larvae, class IV dendrite arborization (C4 da) sensory neurons in the peripheral nervous system are responsible for perception of multiple nociceptive modalities, including noxious heat and harsh mechanical stimulation, through distinct receptors [1-9]. Silencing or ablation of C4 da neurons largely eliminates larval responses to noxious stimuli [10-12], whereas optogenetic activation of C4 da neurons is sufficient to provoke corkscrew-like rolling behavior similar to what is observed when larvae receive noxious stimuli, such as high temperature or harsh mechanical stimulation [10-12]...
August 21, 2017: Current Biology: CB
https://www.readbyqxmd.com/read/28756946/fragile-x-mental-retardation-protein-requirements-in-activity-dependent-critical-period-neural-circuit-refinement
#7
Caleb A Doll, Dominic J Vita, Kendal Broadie
Activity-dependent synaptic remodeling occurs during early-use critical periods, when naive juveniles experience sensory input. Fragile X mental retardation protein (FMRP) sculpts synaptic refinement in an activity sensor mechanism based on sensory cues, with FMRP loss causing the most common heritable autism spectrum disorder (ASD), fragile X syndrome (FXS). In the well-mapped Drosophila olfactory circuitry, projection neurons (PNs) relay peripheral sensory information to the central brain mushroom body (MB) learning/memory center...
August 7, 2017: Current Biology: CB
https://www.readbyqxmd.com/read/28710457/methyl-cpg-binding-domain-proteins-inhibit-interspecies-courtship-and-promote-aggression-in-drosophila
#8
Tarun Gupta, Hannah R Morgan, Jonathan C Andrews, Edmond R Brewer, Sarah J Certel
Reproductive isolation and speciation are driven by the convergence of environmental and genetic variation. The integration of these variation sources is thought to occur through epigenetic marks including DNA methylation. Proteins containing a methyl-CpG-binding domain (MBD) bind methylated DNA and interpret epigenetic marks, providing a dynamic yet evolutionarily adapted cellular output. Here, we report the Drosophila MBD-containing proteins, dMBD-R2 and dMBD2/3, contribute to reproductive isolation and survival behavioral strategies...
July 14, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28611607/generating-executable-models-of-the-drosophila-central-complex
#9
Lev E Givon, Aurel A Lazar, Chung-Heng Yeh
The central complex (CX) is a set of neuropils in the center of the fly brain that have been implicated as playing an important role in vision-mediated behavior and integration of spatial information with locomotor control. In contrast to currently available data regarding the neural circuitry of neuropils in the fly's vision and olfactory systems, comparable data for the CX neuropils is relatively incomplete; many categories of neurons remain only partly characterized, and the synaptic connectivity between CX neurons has yet to be fully determined...
2017: Frontiers in Behavioral Neuroscience
https://www.readbyqxmd.com/read/28448523/semaphorin-1a-prevents-drosophila-olfactory-projection-neuron-dendrites-from-mis-targeting-into-select-antennal-lobe-regions
#10
Hung-Chang Shen, Sao-Yu Chu, Tsai-Chi Hsu, Chun-Han Wang, I-Ya Lin, Hung-Hsiang Yu
Elucidating how appropriate neurite patterns are generated in neurons of the olfactory system is crucial for comprehending the construction of the olfactory map. In the Drosophila olfactory system, projection neurons (PNs), primarily derived from four neural stem cells (called neuroblasts), populate their cell bodies surrounding to and distribute their dendrites in distinct but overlapping patterns within the primary olfactory center of the brain, the antennal lobe (AL). However, it remains unclear whether the same molecular mechanisms are employed to generate the appropriate dendritic patterns in discrete AL glomeruli among PNs produced from different neuroblasts...
April 2017: PLoS Genetics
https://www.readbyqxmd.com/read/28441561/neural-circuits-reduced-inhibition-in-fragile-x-syndrome
#11
Randall M Golovin, Kendal Broadie
The Drosophila Fragile X Syndrome model has long generated insights into this devastating neurological disease state. A recent study of olfactory neural circuitry shows that decreased lateral inhibition onto projection neurons relaying sensory input into higher brain centers causes impaired behavior.
April 24, 2017: Current Biology: CB
https://www.readbyqxmd.com/read/28373203/three-tier-regulation-of-cell-number-plasticity-by-neurotrophins-and-tolls-in-drosophila
#12
Istvan Foldi, Niki Anthoney, Neale Harrison, Monique Gangloff, Brett Verstak, Mohanakarthik Ponnadai Nallasivan, Samaher AlAhmed, Bangfu Zhu, Mark Phizacklea, Maria Losada-Perez, Marta Moreira, Nicholas J Gay, Alicia Hidalgo
Cell number plasticity is coupled to circuitry in the nervous system, adjusting cell mass to functional requirements. In mammals, this is achieved by neurotrophin (NT) ligands, which promote cell survival via their Trk and p75(NTR) receptors and cell death via p75(NTR) and Sortilin. Drosophila NTs (DNTs) bind Toll receptors instead to promote neuronal survival, but whether they can also regulate cell death is unknown. In this study, we show that DNTs and Tolls can switch from promoting cell survival to death in the central nervous system (CNS) via a three-tier mechanism...
May 1, 2017: Journal of Cell Biology
https://www.readbyqxmd.com/read/27880074/what-does-the-fruitless-gene-tell-us-about-nature-vs-nurture-in-the-sex-life-of-drosophila
#13
REVIEW
Daisuke Yamamoto, Soh Kohatsu
The fruitless (fru) gene in Drosophila has been proposed to play a master regulator role in the formation of neural circuitries for male courtship behavior, which is typically considered to be an innate behavior composed of a fixed action pattern as generated by the central pattern generator. However, recent studies have shed light on experience-dependent changes and sensory-input-guided plasticity in courtship behavior. For example, enhanced male-male courtship, a fru mutant "hallmark," disappears when fru-mutant males are raised in isolation...
April 3, 2017: Fly
https://www.readbyqxmd.com/read/27855059/neural-circuitry-coordinating-male-copulation
#14
Hania J Pavlou, Andrew C Lin, Megan C Neville, Tetsuya Nojima, Fengqiu Diao, Brian E Chen, Benjamin H White, Stephen F Goodwin
Copulation is the goal of the courtship process, crucial to reproductive success and evolutionary fitness. Identifying the circuitry underlying copulation is a necessary step towards understanding universal principles of circuit operation, and how circuit elements are recruited into the production of ordered action sequences. Here, we identify key sex-specific neurons that mediate copulation in Drosophila, and define a sexually dimorphic motor circuit in the male abdominal ganglion that mediates the action sequence of initiating and terminating copulation...
November 15, 2016: ELife
https://www.readbyqxmd.com/read/27751233/continuous-lateral-oscillations-as-a-core-mechanism-for-taxis-in-drosophila-larvae
#15
Antoine Wystrach, Konstantinos Lagogiannis, Barbara Webb
Taxis behaviour in Drosophila larva is thought to consist of distinct control mechanisms triggering specific actions. Here, we support a simpler hypothesis: that taxis results from direct sensory modulation of continuous lateral oscillations of the anterior body, sparing the need for 'action selection'. Our analysis of larvae motion reveals a rhythmic, continuous lateral oscillation of the anterior body, encompassing all head-sweeps, small or large, without breaking the oscillatory rhythm. Further, we show that an agent-model that embeds this hypothesis reproduces a surprising number of taxis signatures observed in larvae...
October 18, 2016: ELife
https://www.readbyqxmd.com/read/27710784/direct-measurement-of-correlation-responses-in-drosophila-elementary-motion-detectors-reveals-fast-timescale-tuning
#16
Emilio Salazar-Gatzimas, Juyue Chen, Matthew S Creamer, Omer Mano, Holly B Mandel, Catherine A Matulis, Joseph Pottackal, Damon A Clark
Animals estimate visual motion by integrating light intensity information over time and space. The integration requires nonlinear processing, which makes motion estimation circuitry sensitive to specific spatiotemporal correlations that signify visual motion. Classical models of motion estimation weight these correlations to produce direction-selective signals. However, the correlational algorithms they describe have not been directly measured in elementary motion-detecting neurons (EMDs). Here, we employed stimuli to directly measure responses to pairwise correlations in Drosophila's EMD neurons, T4 and T5...
October 5, 2016: Neuron
https://www.readbyqxmd.com/read/27702892/predictability-and-hierarchy-in-drosophila-behavior
#17
Gordon J Berman, William Bialek, Joshua W Shaevitz
Even the simplest of animals exhibit behavioral sequences with complex temporal dynamics. Prominent among the proposed organizing principles for these dynamics has been the idea of a hierarchy, wherein the movements an animal makes can be understood as a set of nested subclusters. Although this type of organization holds potential advantages in terms of motion control and neural circuitry, measurements demonstrating this for an animal's entire behavioral repertoire have been limited in scope and temporal complexity...
October 18, 2016: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/27683892/developmental-experience-dependent-plasticity-in-the-first-synapse-of-the-drosophila-olfactory-circuit
#18
REVIEW
Randall M Golovin, Kendal Broadie
Evidence accumulating over the past 15 years soundly refutes the dogma that the Drosophila nervous system is hardwired. The preponderance of studies reveals activity-dependent neural circuit refinement driving optimization of behavioral outputs. We describe developmental, sensory input-dependent plasticity in the brain olfactory antennal lobe, which we term long-term central adaption (LTCA). LTCA is evoked by prolonged exposure to an odorant during the first week of posteclosion life, resulting in a persistently decreased response to aversive odors and an enhanced response to attractive odors...
December 1, 2016: Journal of Neurophysiology
https://www.readbyqxmd.com/read/27328844/gustatory-processing-and-taste-memory-in-drosophila
#19
Pavel Masek, Alex C Keene
Taste allows animals to discriminate the value and potential toxicity of food prior to ingestion. Many tastants elicit an innate attractive or avoidance response that is modifiable with nutritional state and prior experience. A powerful genetic tool kit, well-characterized gustatory system, and standardized behavioral assays make the fruit fly, Drosophila melanogaster, an excellent system for investigating taste processing and memory. Recent studies have used this system to identify the neural basis for acquired taste preference...
June 2016: Journal of Neurogenetics
https://www.readbyqxmd.com/read/27265393/fruitless-represses-robo1-transcription-to-shape-male-specific-neural-morphology-and-behavior-in-drosophila
#20
Hiroki Ito, Kosei Sato, Shu Kondo, Ryu Ueda, Daisuke Yamamoto
The Drosophila fruitless (fru) gene is regarded as a master regulator of the formation of male courtship circuitry, yet little is known about its molecular basis of action. We show that roundabout 1 (robo1) knockdown in females promotes formation of the male-specific neurite in sexually dimorphic mAL interneurons and that overexpression of the male-specific Fru(BM) diminishes the expression of Robo1 in the fly brain. Our electrophoretic mobility shift and reporter assays identify the 42-bp segment encompassing the palindrome sequence T T C G C T G C G C C G T G A A in the 5' UTR of robo1 exon1 as the Fru(BM)-responsive element...
June 20, 2016: Current Biology: CB
keyword
keyword
7594
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"