Read by QxMD icon Read

Cancer photothermal therapy nano

Hwa Seung Han, Ki Young Choi, Hansang Lee, Minchang Lee, Jae Yoon An, Sol Shin, Seunglee Kwon, Doo Sung Lee, Jae Hyung Park
Optically active nanomaterials have shown great promise as a nanomedicine platform for photothermal or photodynamic cancer therapies. Herein, we report a gold-nanoclustered hyaluronan nanoassembly (GNc-HyNA) for photothermally boosted photodynamic tumor ablation. Unlike other supramolecular gold constructs based on gold nanoparticle building blocks, this system utilizes the nanoassembly of amphiphilic hyaluronan conjugates as a drug carrier for a hydrophobic photodynamic therapy agent verteporfin, a polymeric reducing agent, and an organic nanoscaffold upon which gold can grow...
December 27, 2016: ACS Nano
Lucian Mocan, Cristian Matea, Flaviu A Tabaran, Ofelia Mosteanu, Teodora Pop, Cosmin Puia, Lucia Agoston-Coldea, Gabriela Zaharie, Teodora Mocan, Anca Dana Buzoianu, Cornel Iancu
We have used albumin (BSA) bound to gold nanoparticles (GNPs) as active vectors to target liver cells. Our incentive to develop an original model of living liver cancer sprang from the ethical drawbacks that hindered the assessment of the selective character and the therapeutic capacity of these nano-biosystems in cancer patients. Ex vivo-perfused liver specimens were obtained from hepatocellular carcinoma patients similarly to the surgical technique of transplantation. Albumin bound to GNPs was inoculated intra-arterially onto the resulting specimen and determined the specific delivery of the nano-bioconjugate into the malignant tissue by means of the capillary bed...
March 2017: Biomaterials
Xian Li, Chang Liu, Shengyu Wang, Jian Jiao, Donghua Di, Tongying Jiang, Qinfu Zhao, Siling Wang
In this work, we described the development of the redox and pH dual stimuli-responsive drug delivery system and combination of the chemotherapy and photothermal therapy for cancer treatment. The poly(acrylic acid) (PAA) was conjugated on the outlets of hollow mesoporous carbon (HMC) via disulfide bonds. PAA was used as a capping to block drug within the mesopores of HMC for its lots of favorable advantages, such as good biocompatibility, appropriate molecular weight to block the mesopores of HMC, extension of the blood circulation, and the improvement of the dispersity of the nano-carriers in physiological environment...
February 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
Bingjiang Zhou, Yunzheng Li, Guangle Niu, Minhuan Lan, Qingyan Jia, Qionglin Liang
Given their easy structural modification and good biocompatibility advantages, near-infrared (NIR) organic dyes with a large molar extinction coefficient, while a superlow fluorescence quantum yield shows considerable potential application in photothermal therapy (PTT). Herein, a new NIR-absorbing asymmetric cyanine dye, namely, RC, is designed and synthesized via the hybrid of rhodamine and hemicyanine derivatives. RC-BSA nanoparticles (NPs) are fabricated by using the bovine serum albumin (BSA) matrix. The NPs exhibit a strong NIR absorption peak at ∼868 nm and 28...
November 9, 2016: ACS Applied Materials & Interfaces
Surya Cheemalapati, Mikhail Ladanov, Bo Pang, Yuan Yuan, Piyush Koria, Younan Xia, Anna Pyayt
Understanding how plasmonic nanoparticles collectively generate heat upon exposure to light and thus increase the local temperature of the surrounding medium is critical for many applications such as plasmon-assisted microfluidics, plasmonic tweezers, and photothermal cancer therapy. Reliable temperature manipulation requires the capability to spatially and dynamically analyze local temperature profiles as a function of nanoparticle concentration and laser intensity. In this work, we present a novel method for visualization of local temperature increase using elastin-like polypeptides (ELP)...
December 7, 2016: Nanoscale
Mahmoud T Abo-Elfadl, Amira M Gamal-Eldeen, Mostafa M Elshafey, Gamil M Abdalla, Shawkey S Ali, Moustafa R K Ali, Mahmoud F M Zawrah
BACKGROUND: The photothermal properties of gold nanoparticles (GNPs) are promising therapeutic modality for cancer. The study objective is to evaluate the therapeutic effect of the prepared PEGylated gold nano-semicubes (PEG-GNSCs) in skin cancer. The synthesized PEG-GNSCs were intermediate between cubic and rod shapes (low aspect ratio- rods). METHODS: In vitro toxicity was investigated in human skin melanoma Sk-Mel-28 cells, and skin squamous cell carcinoma was induced in CD1 mice by dimethylbenzanthracene (DMBA) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA)...
November 2016: Journal of Photochemistry and Photobiology. B, Biology
Xiaodong Liu, Guangbao Yang, Lifen Zhang, Zhuang Liu, Zhenping Cheng, Xiulin Zhu
The multifunctional nano-micelle platform holds great promise to enhance the accuracy and efficiency of cancer diagnosis and therapy. In this work, an amphiphilic poly[(poly(ethylene glycol) methyl ether methacrylate)-co-(3-aminopropyl methacrylate)]-block-poly(methyl methacrylate) (P(PEGMA-co-APMA)-b-PMMA) block copolymer was synthesized by successive RAFT polymerizations and subsequent chemical modification. Then the multifunctional micelles with high solubility in physiological environments were developed by a self-assembly and crosslinking processes...
August 18, 2016: Nanoscale
Jesper Tranekjær Jørgensen, Kamilla Norregaard, Pengfei Tian, Poul Martin Bendix, Andreas Kjaer, Lene B Oddershede
Plasmonic nanoparticle-based photothermal cancer therapy is a promising new tool to inflict localized and irreversible damage to tumor tissue by hyperthermia, without harming surrounding healthy tissue. We developed a single particle and positron emission tomography (PET)-based platform to quantitatively correlate the heat generation of plasmonic nanoparticles with their potential as cancer killing agents. In vitro, the heat generation and absorption cross-section of single irradiated nanoparticles were quantified using a temperature sensitive lipid-based assay and compared to their theoretically predicted photo-absorption...
2016: Scientific Reports
Julien Lombard, Thierry Biben, Samy Merabia
Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble...
August 4, 2016: Nanoscale
Tzu-Yin Lin, Wenchang Guo, Qilai Long, Aihong Ma, Qiangqiang Liu, Hongyong Zhang, Yee Huang, Siddarth Chandrasekaran, Chongxian Pan, Kit S Lam, Yuanpei Li
Photodynamic therapy (PDT) is a promising non-invasive therapeutic modality that has been proposed for treating prostate cancer, but the procedure is associated with limited efficacy, tumor recurrence and photo-toxicity. In the present study, we proposed to develop a novel multifunctional nano-platform for targeted delivery of heat, reactive oxygen species (ROS) and heat shock protein 90 (Hsp90) inhibitor simultaneously for combination therapy against prostate cancer. This new nano-platform combines two newly developed entities: 1) a unique organic and biocompatible nanoporphyrin-based drug delivery system that can generate efficient heat and ROS simultaneously with light activation at the tumor sites for dual-modal photothermal- and photodynamic- therapy (PTT/PDT), and 2) new nano-formulations of Hsp90 inhibitors that can decrease the levels of pro-survival and angiogenic signaling molecules induced by phototherapy, therefore, further sensitizing cancer cells to phototherapy...
2016: Theranostics
Chao Liang, Ligeng Xu, Guosheng Song, Zhuang Liu
Metastasis is directly or indirectly responsible for the majority of cancer deaths. Anti-metastasis treatment is thus the key to cure cancer. Recent development in nanomedicine has shown great promise for tackling cancer metastasis. In recent years, nanoparticle-based drug delivery systems have been extensively explored for improving cancer treatment, showing the ability to reduce the risk of tumor metastasis compared with conventional chemotherapy. Photothermal therapy, by employing nano-theranostic agents, has also been found to be able to inhibit lymphatic tumor metastasis...
June 22, 2016: Chemical Society Reviews
Xuyuan Zhang, Chongyin Yang, Jianping Zhou, Meirong Huo
Nano-sized in vivo active targeting drug delivery systems have been developed to a high anti-tumor efficacy strategy against certain cancer-cells-specific. Graphene based nanocarriers with unique physical and chemical properties have shown significant potentials in this aspect. Here, octreotide (OCT), an efficient biotarget molecule, is conjugated to PEGylated nanographene oxide (NGO) drug carriers for the first time. The obtained NGO-PEG-OCT complex shows low toxicity and excellent stability in vivo and is able to achieve somatostatin receptor-mediated tumor-specific targeting delivery...
July 2016: Small
Ziliang Dong, Hua Gong, Min Gao, Wenwen Zhu, Xiaoqi Sun, Liangzhu Feng, Tingting Fu, Yonggang Li, Zhuang Liu
Cancer combination therapy to treat tumors with different therapeutic approaches can efficiently improve treatment efficacy and reduce side effects. Herein, we develop a theranostic nano-platform based on polydopamine (PDA) nanoparticles, which then are exploited as a versatile carrier to allow simultaneous loading of indocyanine green (ICG), doxorubicin (DOX) and manganese ions (PDA-ICG-PEG/DOX(Mn)), to enable imaging-guided chemo & photothermal cancer therapy. In this system, ICG acts as a photothermal agent, which shows red-shifted near-infrared (NIR) absorbance and enhanced photostability compared with free ICG...
2016: Theranostics
Wentao Zhang, Shuo Shi, Yanru Wang, Shaoxuan Yu, Wenxin Zhu, Xu Zhang, Daohong Zhang, Baowei Yang, Xin Wang, Jianlong Wang
Biologically, MoS2-based nanostructures have been intensely applied for the photothermal therapy of cancer, but rarely for antibacterial uses. In this contribution, a multifunctional chitosan (CS) functionalized magnetic MoS2 (abbreviated to CFM) was constructed to nonspecifically combat bacterial infection by integrating bacterial conjugation and enrichment, and NIR-triggered photothermal sterilization. Owing to the abundant introduced amino groups, the CFM complex offers a significantly enhanced conjugation efficiency without obvious specificity towards both Gram-positive and -negative bacteria compared to amino-free magnetic MoS2...
June 2, 2016: Nanoscale
Jianbo Cao, Hengqing An, Xinglu Huang, Guifeng Fu, Rongqiang Zhuang, Lei Zhu, Jin Xie, Fan Zhang
Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities. Because each modality has its own set of advantages and limitations, there has been interest in developing methods that can co-deliver the two regimens for enhanced tumor treatment. Among the efforts, nano-graphene oxide-mediated phototherapies have recently attracted much attention. Nano-graphene oxide has a broad absorbance spectrum and can be loaded with photosensitizers, such as chlorin e6, with high efficiency...
May 21, 2016: Nanoscale
Liang Cheng, Sida Shen, Sixiang Shi, Yuan Yi, Xiaoyong Wang, Guosheng Song, Kai Yang, Gang Liu, Todd E Barnhart, Weibo Cai, Zhuang Liu
Multifunctional theranostic agents have become rather attractive to realize image-guided combination cancer therapy. Herein, we develop a novel method to synthesize Bi2Se3 nanosheets decorated with mono-dispersed FeSe2 nanoparticles (FeSe2/Bi2Se3) for tetra-modal image-guided combined photothermal & radiation tumor therapy. Interestingly, upon addition of Bi(NO3)3, pre-made FeSe2 nanoparticles via cation exchange would be gradually converted into Bi2Se3 nanosheets, on which remaining FeSe2 nanoparticles are decorated...
April 5, 2016: Advanced Functional Materials
Poliraju Kalluru, Raviraj Vankayala, Chi-Shiun Chiang, Kuo Chu Hwang
Cancer is one of the major life-threatening diseases among human beings. Developing a simple, cost-effective and biocompatible approach to treat cancers using ultra-low doses of light is a grand challenge in clinical cancer treatments. In this study, we report for the first time that nano-sized graphene oxide (GO) exhibits single-photon excitation wavelength dependent photoluminescence in the visible and short near-infrared (NIR) region, suitable for in vivo multi-color fluorescence imaging. We also demonstrate in both in vitro and in vivo experiments to show that nano GO can sensitize the formation of singlet oxygen to exert combined nanomaterial-mediated photodynamic therapeutic (NmPDT) and photothermal therapy (NmPTT) effects on the destruction of B16F0 melanoma tumors in mice using ultra-low doses (∼0...
July 2016: Biomaterials
Hongyu Liu, Tan Li, Yuhong Liu, Guiqi Qin, Xiaoping Wang, Tongsheng Chen
In the present work, we report a facile and rapid green strategy to fabricate functionalized reduced nano-graphene oxide (nrGO) as a cooperative nanotemplate for both photothermal therapy and drug loading. Graphite oxide was firstly oxidated by nitronium ions (NO2 (+)) solution at the aid of microwave heating to obtain nano-GO (nGO) with about 50 nm of diameter, and the nGO was then reduced in pure glucose at 135 °C for 30 min to obtain nrGO with about 40 nm of diameter. The nrGO exhibits excellent biocompatibility including stable dispersibility in cell culture medium and rapid cellular uptake as well as non-cytotoxicity up to 100 μg/mL...
December 2016: Nanoscale Research Letters
Fangjie Wo, Rujiao Xu, Yuxiang Shao, Zheyu Zhang, Maoquan Chu, Donglu Shi, Shupeng Liu
In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics...
2016: Theranostics
Jinhwan Kim, Jihoon Kim, Cherlhyun Jeong, Won Jong Kim
To date, various nanomaterials with the ability for gene delivery or photothermal effect have been developed in the field of biomedicine. The therapeutic potential of these nanomaterials has raised considerable interests in their use in potential next-generation strategies for effective anticancer therapy. In particular, the advancement of novel nanomedicines utilizing both therapeutic strategies of gene delivery and photothermal effect has generated much optimism regarding the imminent development of effective and successful cancer treatments...
March 1, 2016: Advanced Drug Delivery Reviews
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"