keyword
MENU ▼
Read by QxMD icon Read
search

drosophila development

keyword
https://www.readbyqxmd.com/read/28644712/comparative-analysis-of-behavioral-and-transcriptional-variation-underlying-co2-sensory-neuron-function-and-development-in-drosophila
#1
Jia Wern Pan, Joi McLaughlin, Haining Yang, Charles Leo, Paula Rambarat, Sumie Okuwa, Anaïs Monroy-Eklund, Sabrina Clark, Corbin D Jones, Pelin Cayirlioglu Volkan
Carbon dioxide is an important environmental cue for many insects, regulating many behaviors including some that have direct human impacts. To further improve our understanding of how this system varies among closely related insect species, we examined both the behavioral response to CO2 as well as the transcriptional profile of key developmental regulators of CO2 sensory neurons in the olfactory system across the Drosophila genus. We found that CO2 generally evokes repulsive behavior across most of the Drosophilids we examined, but this behavior has been lost or reduced in several lineages...
June 23, 2017: Fly
https://www.readbyqxmd.com/read/28642678/a-cold-blooded-view-on-adult-neurogenesis
#2
REVIEW
Anabel R Simões, Christa Rhiner
During brain development, highly complex and interconnected neural circuits are established. This intricate wiring needs to be robust to faithfully perform adult brain function throughout life, but at the same time offer room for plasticity to integrate new information. In the mammalian brain, adult-born neurons are produced in restricted niches harboring neural stem cells. In the fruit fly Drosophila, low-level adult neurogenesis arising from a dispersed population of neural progenitors has recently been detected in the optic lobes...
2017: Frontiers in Neuroscience
https://www.readbyqxmd.com/read/28642244/investigation-of-protein-synthesis-in-drosophila-larvae-using-puromycin-labelling
#3
Lisa P Deliu, Abhishek Ghosh, Savraj S Grewal
Translational control of gene expression is an important regulator of growth, homeostasis and aging in Drosophila The ability to measure changes in protein synthesis in response to genetic and environmental cues is therefore important in studying these processes. Here we describe a simple and cost effective approach to assay protein synthesis in Drosophila larval cells and tissues. The method is based on the incorporation of puromycin into nascent peptide chains. Using an ex vivo approach, we label newly synthesized peptides in larvae with puromycin and then measure levels of new protein synthesis using an anti-puromycin antibody...
June 22, 2017: Biology Open
https://www.readbyqxmd.com/read/28642242/specific-expression-and-function-of-the-six3-optix-in-drosophila-serially-homologous-organs
#4
Amer Al Khatib, Natalia Siomava, Antonella Iannini, Nico Posnien, Fernando Casares
Organ size and pattern results from the integration of two positional information systems. One global, encoded by the Hox genes, links organ type with position along the main body axis. Within specific organs, local information is conveyed by signaling molecules that regulate organ growth and pattern. The mesothoracic (T2) wing and the metathoracic (T3) haltere of Drosophila represent a paradigmatic example of this coordination. The Hox gene Ultrabithorax (Ubx), expressed in the developing T3, selects haltere identity by, among other processes, modulating the production and signaling efficiency of Dpp, a BMP2-like molecule that acts as a major regulator of size and pattern...
June 22, 2017: Biology Open
https://www.readbyqxmd.com/read/28637694/dendritic-eph-organizes-dendrodendritic-segregation-in-discrete-olfactory-map-formation-in-drosophila
#5
Marie Anzo, Sayaka Sekine, Shirin Makihara, Kinhong Chao, Masayuki Miura, Takahiro Chihara
Proper function of the neural network results from the precise connections between axons and dendrites of presynaptic and postsynaptic neurons, respectively. In the Drosophila olfactory system, the dendrites of projection neurons (PNs) stereotypically target one of ∼50 glomeruli in the antennal lobe (AL), the primary olfactory center in the brain, and form synapses with the axons of olfactory receptor neurons (ORNs). Here, we show that Eph and Ephrin, the well-known axon guidance molecules, instruct the dendrodendritic segregation during the discrete olfactory map formation...
May 15, 2017: Genes & Development
https://www.readbyqxmd.com/read/28636268/high-throughput-sequencing-reveals-drosophila-suzukii-responses-to-insecticides
#6
Ruchir Mishra, Joanna C Chiu, Gang Hua, Nilesh R Tawari, Michael J Adang, Ashfaq A Sial
Global climate change and acquired resistance to insecticides are threats to world food security. Drosophila suzukii, a devastating invasive pest in many parts of the world, causes substantial economic losses to fruit production industries, forcing farmers to apply broad-spectrum insecticides frequently. This could lead to the development of insecticide resistance. We determined the Lethal Concentration50 (median lethal concentration) values of zeta-cypermethrin, spinosad, and malathion insecticides against D...
June 21, 2017: Insect Science
https://www.readbyqxmd.com/read/28634860/molecular-chaperone-hsp70-and-its-constitutively-active-form-hsc70-play-an-indispensable-role-during-eye-development-of-drosophila-melanogaster
#7
Ajay Kumar, Anand K Tiwari
In the present study, we demonstrate that molecular chaperone Hsp70 and Hsc70 is essential for normal organization and development of ommatidial cells in Drosophila melanogaster eye. An exogenously expressed dominant negative mutant of Hsp70 (K71E) and Hsc70.4 (K71S and D206S) in an eye-specific manner resulted in eye degeneration that includes loss of eye pigment, disorganized ommatidia, abnormality in bristle cell arrangement and reduction in the eye size. The developmental organization of ommatidial cells (cone, photoreceptor, pigment, and bristle cell complex) was disturbed in Hsp70 and Hsc70 mutants...
June 20, 2017: Molecular Neurobiology
https://www.readbyqxmd.com/read/28634443/the-narrow-abdomen-ion-channel-complex-is-highly-stable-and-persists-from-development-into-adult-stages-to-promote-behavioral-rhythmicity
#8
Devon L Moose, Stephanie J Haase, Benjamin T Aldrich, Bridget C Lear
The sodium leak channel NARROW ABDOMEN (NA)/ NALCN is an important component of circadian pacemaker neuronal output. In Drosophila, rhythmic expression of the NA channel regulator Nlf-1 in a subset of adult pacemaker neurons has been proposed to contribute to circadian regulation of channel localization or activity. Here we have restricted expression of Drosophila NA channel subunits or the Nlf-1 regulator to either development or adulthood using the temperature-inducible tubulin-GAL80(ts) system. Surprisingly, we find that developmental expression of endogenous channel subunits and Nlf-1 is sufficient to promote robust rhythmic behavior in adults...
2017: Frontiers in Cellular Neuroscience
https://www.readbyqxmd.com/read/28634210/the-glycosylation-pathway-is-required-for-the-secretion-of-slit-and-for-the-maintenance-of-the-slit-receptor-robo-on-axons
#9
Mary Ann Manavalan, Vatsala Ruvini Jayasinghe, Rickinder Grewal, Krishna Moorthi Bhat
Slit proteins act as repulsive axon guidance cues by activating receptors of the Roundabout (Robo) family. During early neurogenesis in Drosophila melanogaster, Slit prevents the growth cones of longitudinal tract neurons from inappropriately crossing the midline, thus restricting these cells to trajectories parallel to the midline. Slit is expressed in midline glial cells, and Robo is present in longitudinal axon tracts and growth cones. We showed that the enzyme Mummy (Mmy) controlled Slit-Robo signaling through mechanisms that affected both the ligand and the receptor...
June 20, 2017: Science Signaling
https://www.readbyqxmd.com/read/28632436/development-of-computer-algorithm-for-editing-of-next-generation-sequencing-metagenome-data
#10
Radhika Khanna, Sangeeta Mittal, Sujata Mohanty
The successful implementation of the advanced sequencing technology, the next generation sequencing (NGS) motivates scientists from diverse fields of biological research especially from genomics and transcriptomics in generating large genomic data set to make their analysis more robust and come up with strong inference. However, exploiting this huge genomic data set becomes a challenge for the molecular biologists. To corroborate this problem, computational software and hardware are being developed in parallel and become an integral part of life science...
June 20, 2017: Journal of Computational Biology: a Journal of Computational Molecular Cell Biology
https://www.readbyqxmd.com/read/28632130/the-laminar-organization-of-the-drosophila-ellipsoid-body-is-semaphorin-dependent-and-prevents-the-formation-of-ectopic-synaptic-connections
#11
Xiaojun Xie, Masashi Tabuchi, Matthew P Brown, Sarah P Mitchell, Mark N Wu, Alex L Kolodkin
The ellipsoid body (EB) in the Drosophila brain is a central complex (CX) substructure that harbors circumferentially laminated ring (R) neuron axons and mediates multifaceted sensory integration and motor coordination functions. However, what regulates R axon lamination and how lamination affects R neuron function remain unknown. We show here that the EB is sequentially innervated by small-field and large-field neurons, and that early-developing EB neurons play an important regulatory role in EB laminae formation...
June 20, 2017: ELife
https://www.readbyqxmd.com/read/28631995/monitoring-the-effect-of-pathogenic-nematodes-on-locomotion-of-drosophila-larvae
#12
Martin Kunc, Badrul Arefin, Pavel Hyrsl, Ulrich Theopold
One of the key factors that determine the interaction between hosts and their parasites is the frequency of their interactions, which depends on the locomotory behavior of both parts. To address host behavior we used natural infections involving insect pathogenic nematodes and Drosophila melanogaster larvae as hosts. Using a modified version of a recently described method (FIMTrack) to assess several parameters in larger sets of animals, we initially detected specific differences in larval food searching when comparing Drosophila strains...
February 21, 2017: Fly
https://www.readbyqxmd.com/read/28630470/overcoming-evolved-resistance-to-population-suppressing-homing-based-gene-drives
#13
John M Marshall, Anna Buchman, Héctor M Sánchez C, Omar S Akbari
The recent development of a CRISPR-Cas9-based homing system for the suppression of Anopheles gambiae is encouraging; however, with current designs, the slow emergence of homing-resistant alleles is expected to result in suppressed populations rapidly rebounding, as homing-resistant alleles have a significant fitness advantage over functional, population-suppressing homing alleles. To explore this concern, we develop a mathematical model to estimate tolerable rates of homing-resistant allele generation to suppress a wild population of a given size...
June 19, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28627812/genetics-of-alcohol-consumption-in-drosophila-melanogaster
#14
Sophia Fochler, Tatiana V Morozova, Morgan R Davis, Alexander W Gearhart, Wen Huang, Trudy F C Mackay, Robert R H Anholt
Individual variation in alcohol consumption in human populations is determined by genetic, environmental, social and cultural factors. In contrast to humans, genetic contributions to complex behavioral phenotypes can be readily dissected in Drosophila, where both the genetic background and environment can be controlled and behaviors quantified through simple high-throughput assays. Here, we measured voluntary consumption of ethanol in ~3,000 individuals of each sex from an advanced intercross population derived from 37 lines of the Drosophila melanogaster Genetic Reference Panel...
June 19, 2017: Genes, Brain, and Behavior
https://www.readbyqxmd.com/read/28624601/the-manchester-fly-facility-implementing-an-objective-driven-long-term-science-communication-initiative
#15
REVIEW
Sanjai Patel, Andreas Prokop
Science communication is increasingly important for scientists, although research, teaching and administration activities tend to eat up our time already, and budgets for science communication are usually low. It appears impossible to combine all these tasks and, in addition, to develop engagement activities to a quality and impact that would make the efforts worth their while. Here we argue that these challenges are easier addressed when centering science communication initiatives on a long-term vision with a view to eventually forming outreach networks where the load can be shared whilst being driven to higher momentum...
June 15, 2017: Seminars in Cell & Developmental Biology
https://www.readbyqxmd.com/read/28623239/-ccug-n-rna-toxicity-in-a-drosophila-model-for-myotonic-dystrophy-type-2-dm2-activates-apoptosis
#16
Vildan Betul Yenigun, Mario Sirito, Alla Amcheslavky, Tomek Czernuszewicz, Jordi Colonques-Bellmunt, Irma García-Alcover, Marzena Wojciechowska, Clare Bolduc, Zhihong Chen, Arturo López Castel, Ralf Krahe, Andreas Bergmann
The myotonic dystrophies are prototypic toxic RNA gain-of-function diseases. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by different unstable, noncoding microsatellite repeat expansions -- (CTG)DM1 in DMPK and (CCTG)DM2 in CNBP Although transcription of mutant repeats into (CUG)DM1 or (CCUG)DM2 appears to be necessary and sufficient to cause disease, their pathomechanisms remain incompletely understood. To study the mechanisms of (CCUG)DM2 toxicity and develop a convenient model for drug screening, we generated a transgenic DM2 model in the fruit fly Drosophila melanogaster with (CCUG)n repeats of variable length (n=16 and 106)...
June 16, 2017: Disease Models & Mechanisms
https://www.readbyqxmd.com/read/28621416/all-in-one-integrating-cell-polarity-meiosis-mitosis-and-mechanical-forces-in-early-oocyte-differentiation-in-vertebrates
#17
Yaniv M Elkouby
While the differentiation of oocytes is key for embryonic development, and its investigation is crucial for advancing our understanding of human reproduction and fertility, many fundamental questions in oogenesis have been long standing. However, recent technical advances have led to several breakthroughs mainly in mice and zebrafish. Here I review these recent findings, including regulation and organization of the germline cyst, the mechanistics of chromosomal pairing, establishment of cell polarity, and formation of a universal mRNA-protein (mRNP) granule called the Balbiani body...
2017: International Journal of Developmental Biology
https://www.readbyqxmd.com/read/28621415/building-functional-units-of-movement-generation-and-movement-sensation-in-the-embryo
#18
Peleg Hasson, Talila Volk, Adi Salzberg
The musculoskeletal and proprioceptive sensory systems exhibit intricate crosstalk between force generation, force sensation and force transmission, all of which are critical for coordinated animal locomotion. Recent developmental studies of the musculoskeletal and proprioceptive units of the invertebrate Drosophila embryo, have revealed several common molecular and structural principles mediating the formation of each of these systems. These common principles, as well as the differences between the developmental programs of the two systems, are discussed...
2017: International Journal of Developmental Biology
https://www.readbyqxmd.com/read/28621414/micrornas-in-drosophila-regulate-cell-fate-by-repressing-single-mrna-targets
#19
Noam Perry, Marina Volin, Hila Toledano
Regulation of gene expression governs all aspects of the lifespan of the organism, such as embryonic development, stem cell differentiation, reproduction and aging. Among the most important regulators of these extremely complex processes are microRNAs (miRNAs), small non-coding RNAs that repress gene expression by binding to primary sequences on the mRNA of their target. Theoretically, the mere existence of a miRNA recognition sequence on a given mRNA is sufficient to generate a functional response. Since these short sequences are abundant, one miRNA can potentially bind to multiple targets, thus generating endless possible biological outcomes...
2017: International Journal of Developmental Biology
https://www.readbyqxmd.com/read/28620760/notch-an-interactive-player-in-neurogenesis-and-disease
#20
REVIEW
Runrui Zhang, Anna Engler, Verdon Taylor
Notch signaling is evolutionarily conserved from Drosophila to human. It plays critical roles in neural stem cell maintenance and neurogenesis in the embryonic brain as well as in the adult brain. Notch functions greatly depend on careful regulation and cross-talk with other regulatory mechanisms. Deregulation of Notch signaling is involved in many neurodegenerative diseases and brain disorders. Here, we summarize the fundamental role of Notch in neuronal development and specification and discuss how epigenetic regulation and pathway cross-talk contribute to Notch function...
June 15, 2017: Cell and Tissue Research
keyword
keyword
111097
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"