Read by QxMD icon Read


shared collection
8 papers 0 to 25 followers
Stephanie C Casey, Monica Vaccari, Fahd Al-Mulla, Rabeah Al-Temaimi, Amedeo Amedei, Mary Helen Barcellos-Hoff, Dustin G Brown, Marion Chapellier, Joseph Christopher, Colleen S Curran, Stefano Forte, Roslida A Hamid, Petr Heneberg, Daniel C Koch, P K Krishnakumar, Ezio Laconi, Veronique Maguer-Satta, Fabio Marongiu, Lorenzo Memeo, Chiara Mondello, Jayadev Raju, Jesse Roman, Rabindra Roy, Elizabeth P Ryan, Sandra Ryeom, Hosni K Salem, A Ivana Scovassi, Neetu Singh, Laura Soucek, Louis Vermeulen, Jonathan R Whitfield, Jordan Woodrick, Annamaria Colacci, William H Bisson, Dean W Felsher
Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines...
June 2015: Carcinogenesis
Sabine A S Langie, Gudrun Koppen, Daniel Desaulniers, Fahd Al-Mulla, Rabeah Al-Temaimi, Amedeo Amedei, Amaya Azqueta, William H Bisson, Dustin G Brown, Gunnar Brunborg, Amelia K Charles, Tao Chen, Annamaria Colacci, Firouz Darroudi, Stefano Forte, Laetitia Gonzalez, Roslida A Hamid, Lisbeth E Knudsen, Luc Leyns, Adela Lopez de Cerain Salsamendi, Lorenzo Memeo, Chiara Mondello, Carmel Mothersill, Ann-Karin Olsen, Sofia Pavanello, Jayadev Raju, Emilio Rojas, Rabindra Roy, Elizabeth P Ryan, Patricia Ostrosky-Wegman, Hosni K Salem, A Ivana Scovassi, Neetu Singh, Monica Vaccari, Frederik J Van Schooten, Mahara Valverde, Jordan Woodrick, Luoping Zhang, Nik van Larebeke, Micheline Kirsch-Volders, Andrew R Collins
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability...
June 2015: Carcinogenesis
Poojitha Rajasekar, Christina L O'Neill, Lydia Eeles, Alan W Stitt, Reinhold J Medina
The vascular complications of diabetes significantly impact the quality of life and mortality in diabetic patients. Extensive evidence from various human clinical trials has clearly established that a period of poor glycemic control early in the disease process carries negative consequences, such as an increase in the development and progression of vascular complications that becomes evident many years later. Importantly, intensive glycemic control established later in the disease process cannot reverse or slow down the onset or progression of diabetic vasculopathy...
2015: Journal of Diabetes Research
Stuart A Newman
The most widely accepted model of evolutionary change, the Modern Evolutionary Synthesis, is based on the gradualism of Darwin and Wallace. They, in turn, developed their ideas in the context of 19th century concepts of how matter, including the tissues of animals and plants, could be reshaped and repatterned. A new physics of condensed, chemically, electrically and mechanically excitable materials formulated in the 20th century was, however, readily taken up by physiologists, who applied it to the understanding of dynamical, external condition-dependent and homeostatic properties of individual organisms...
June 1, 2014: Journal of Physiology
Youngeun Choi, Susan E Mango
Recent studies have discovered phenotypes induced by a transient treatment or mutation that persist for multiple generations without mutations in DNA. Both invertebrates and vertebrates exhibit such inheritance, and a range of environmental factors can act as a trigger. Now referred to as transgenerational epigenetic inheritance or TEI, this emerging field faces a big challenge-what molecular mechanisms account for inheritance of TEI phenotypes? This review describes examples of TEI and focuses on the possible role of histone methylation and small RNAs in mediating TEI...
December 2014: Biochimica et Biophysica Acta
Michael K Skinner, Carlos Gurerrero-Bosagna, M Muksitul Haque, Eric E Nilsson, Jennifer A H Koop, Sarah A Knutie, Dale H Clayton
The prevailing theory for the molecular basis of evolution involves genetic mutations that ultimately generate the heritable phenotypic variation on which natural selection acts. However, epigenetic transgenerational inheritance of phenotypic variation may also play an important role in evolutionary change. A growing number of studies have demonstrated the presence of epigenetic inheritance in a variety of different organisms that can persist for hundreds of generations. The possibility that epigenetic changes can accumulate over longer periods of evolutionary time has seldom been tested empirically...
August 2014: Genome Biology and Evolution
Brian R Herb
Epigenetic modifications produce distinct phenotypes from the same genome through genome-wide transcriptional control. Recently, DNA methylation in honeybees and histone modifications in ants were found to assist the formation of caste phenotypes during development and adulthood. This insight allows us to revisit one of Darwin's greatest challenges to his natural selection theory; the derivation of multiple forms of sterile workers within eusocial species. Differential feeding of larvae creates two distinct developmental paths between queens and workers, with workers further refined by pheromone cues...
2014: Frontiers in Genetics
Adelheid Soubry
The earliest indications for paternally induced transgenerational effects from the environment to future generations were based on a small number of long-term epidemiological studies and some empirical observations. Only recently have experimental animal models and a few analyses on human data explored the transgenerational nature of phenotypic changes observed in offspring. Changes include multiple metabolic disorders, cancer and other chronic diseases. These phenotypes cannot always be explained by Mendelian inheritance, DNA mutations or genetic damage...
July 2015: Progress in Biophysics and Molecular Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"