JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Skeletal muscle afferent fibres release substance P in the nucleus tractus solitarii of anaesthetized cats.

Journal of Physiology 1999 Februrary 2
1. The tachykinin substance P was recovered from the commissural subdivision of the nucleus tractus solitarii (cNTS) using in vivo microdialysis during activation of cardiorespiratory and skeletal muscle receptors in thirteen chloralose-anaesthetized cats. 2. Tetanic muscle contraction was evoked by stimulating L7-S1 ventral roots (n = 7). Electrically induced muscle contraction increased mean arterial pressure (MAP) by 55 +/- 10 mmHg and heart rate by 29 +/- 6 beats min-1. During contraction the dialysate concentration increased 154 % above resting control levels (from 0.217 +/- 0.009 to 0.546 +/- 0.023 fmol (100 microl)-1, control vs. contraction, P < 0.05). 3. Loss of cardiorespiratory input following disruption of the carotid sinus and vagus nerves significantly blunted, but did not abolish, the increase in substance P during muscle contraction (from 0.247 +/- 0.022 to 0.351 +/- 0.021 fmol (100 microl)-1, control vs. contraction, P < 0.05). Approximately 44 % of the substance P release during contraction was independent of cardiorespiratory input transmitted by carotid sinus and vagus nerves. 4. To determine the contribution of cardiorespiratory related neural input on substance P release, an intravascular balloon positioned in the thoracic aorta was inflated to increase arterial pressure (n = 6). Balloon inflation increased MAP by 50 +/- 5 mmHg and substance P increased from 0.251 +/- 0.025 to 0.343 +/- 0. 028 fmol (100 microl)-1 (control vs. balloon inflation, P < 0.05). This increase was completely abolished following interruption of vagal and carotid sinus nerves (from 0.301 +/- 0.012 to 0.311 +/- 0. 014 fmol (100 microl)-1, control vs. balloon inflation). This finding shows that neural input from cardiorespiratory receptors (primarily arterial baroreceptors) accounted for 37 % of the total substance P release during muscle contraction. 5. The findings from this study demonstrate that activation of skeletal muscle receptors and cardiorespiratory receptors (predominantly arterial baroreceptors) increases the extraneuronal concentration of substance P in the cNTS. Because substance P release was not completely abolished during muscle contraction following disruption of carotid sinus and vagus nerves it is proposed that: (1) afferent projections from contraction-sensitive skeletal muscle receptors may release substance P in the NTS; (2) neural input from muscle receptors activates substance P-containing neurones within the NTS; and (3) convergence of afferent input from skeletal muscle receptors and arterial baroreceptors onto substance P-containing neurones in the cNTS facilitates the release of substance P. The role of tachykininergic modulation of cardiorespiratory input is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app