COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Angiotensin converting enzyme inhibition and calcium antagonism attenuate streptozotocin-diabetes-associated mesenteric vascular hypertrophy independently of their hypotensive action.

OBJECTIVES: To investigate the relative roles of angiotensin II, bradykinin, and calcium-dependent pathways in the genesis of mesenteric vascular hypertrophy in experimental diabetes.

DESIGN: Streptozotocin-induced diabetic Sprague-Dawley rats were randomly allocated to these treatments for 24 weeks: no treatment; ramipril at a hypotensive dose; ramipril plus the bradykinin type 2 receptor blocker icatibant; icatibant alone; ramipril at a low dose; the angiotensin II type 1 receptor antagonist, valsartan; the dihydropyridine calcium antagonist, lacidipine; and the nondihydropyridine calcium antagonist mibefradil.

METHODS: Systolic blood pressure was serially measured every 4 weeks by tail-cuff plethysmography. We assessed the vascular architecture in sections of mesenteric arteries obtained after in-vivo perfusion, which were stained with an antibody to alpha-smooth muscle actin.

RESULTS: Both blood pressure and the mesenteric arterial wall: lumen ratio were reduced by administration of ramipril, at the high dose, either alone or in combination with icatibant, and also by valsartan. Treatment either with the low dose of ramipril or with the calcium antagonists lacidipine and mibefradil was associated with a decrease in the wall : lumen ratio of the mesenteric arteries without influencing blood pressure.

CONCLUSIONS: These findings demonstrate that blockade both of angiotensin II-dependent and of calcium-dependent pathways attenuates mesenteric vascular hypertrophy in experimental diabetes. Furthermore, the antitrophic effects of these antihypertensive agents may be independent of their hypotensive effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app