JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

The loss of ventral ectoderm identity correlates with the inability to form an AER in the legless hindlimb bud.

We have characterized the early stages of murine hindlimb morphogenesis in the legless (lgl)mutant and non-mutant littermates. Initially the entire ventral ectoderm expresses many genetic markers characteristic of the AER (en-1, fgf-8, msx-2, dlx-2, cd44, and cx-43). Subsequently, the expression domain of most of these genes is restricted to the thickened ectoderm of the disto-ventral limb margin prior to forming an AER. In lgl, the expression of these genes is initiated but not maintained and the disto-ventral marginal ectoderm does not thicken. In contrast, Wnt7a expression is initiated and maintained in the dorsal ectoderm. The limb mesenchyme of lgl and non-mutant embryos initially expresses lmx-1b and fgf-10 uniformly. As the ventro-distal marginal ectoderm thickens, lmx-1b is progressively dorsally restricted in non-mutants but continues to be expressed ventrally in lgl hindlimb buds. These data suggest that establishment of a dorso-ventral ectodermal interface is not sufficient for AER formation and that restriction of lmx-1b to the dorsal mesenchyme is coordinately linked to AER formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app