Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential expression of Galalpha1,3Gal epitope in polymeric and monomeric IgM secreted by mouse myeloma cells deficient in alpha2, 6-sialyltransferase.

Glycobiology 1998 August
IgM are glycoproteins secreted by plasma cells as (mu2L2)5+J or (mu2L2)6 polymers. In most species, mu- and J-chains bear five and one N -glycans, respectively. Here we compare the terminal glycosylation patterns of 4-hydroxy-3-nitrophenylacetyl (NP)-specific IgM secreted by transfectants of the J558L mouse myeloma deficient in the alpha2,6 sialyltransferase [alpha2,6ST(N)] or by a hybridoma expressing this enzyme (B1.8 cells). The absence of alpha2,6-sialylation results in an increased addition of alpha1, 3-galactosyl residues to mu- and J-chain N-glycans. Since alpha1, 3-galactosyltransferase (alpha1,3Gal-T) is similarly expressed in the two cell lines, these results indicate that a competition reaction occurs in vivo between alpha2,6ST(N) and alpha1,3Gal-T. In the alpha2,6ST(N) deficient transfectants, mu-chains lacking the C-subterminal Cys575 residue, which are secreted mainly in the form of mu2L2 monomers, are more efficiently capped by alpha1, 3-galactosyl residues, confirming that polymerization significantly reduces the accessibility of mu-chain glycans to the Golgi processing enzymes involved in the biogenesis of antennary sugars. Functional assays indicate that IgM sialylation affects antigen-binding and complement-dependent hemolysis of haptenated red blood cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app