Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Changes in the nucleolar and coiled body compartments precede lamina and chromatin reorganization during fibre cell denucleation in the bovine lens.

Nuclear elimination accompanies differentiation in such specialized cell types such as erthyrocytes and lens fibre cells. It also accompanies apoptosis which has suggested that similar processes could operate in both. Denucleation occurs in the lens in order to reduce light scatter and this process is often disrupted in cataract. Using the adult bovine lens as a model system, nuclear changes accompanying denucleation are described with particular emphasis on the lamina, nucleolar and coiled body compartments in lens nuclei. Nuclear shape, chromatin reorganization and chromatin breakdown were also monitored to correlate the timing of events. Rearrangement of both A- and B-type nuclear lamins occurred in parallel with chromatin condensation and preceded changes in nuclear shape. The earliest changes detected in this study occurred in the coiled body and nucleolar compartments using coilin and fibrillarin antibodies respectively, suggesting that a shutdown in transcription is an early event in denucleation. Fibrillarin redistributed from an open floret pattern to several condensed spots which gradually decreased in intensity and eventually disappeared. Coilin, however, was localized in several microfoci prior to being reorganized into fewer larger foci. Prior to chromatin condensation, coilin redistributed to the nucleolar compartment and was absent from nuclei where chromatin had begun to condense. Such nuclei were positive by TUNEL staining. In contrast to the nucleus, mitochondrial degradation in lens fibre cells was a rapid process and involved a relatively sharp transition between positive and negative fibre cells for two mitochondrial specific markers, BAP 37 and prohibitin. A link between the changes in the nuclear lamina and chromatin with the initiation of mitochondrial fragmentation was also observed. Therefore, it is possible that the signal for the initiation of denucleation could originate from the mitochondria as proposed for apoptosis. Differences between apoptosis and lens fibre cell denucleation were noted and included the timescale of nuclear changes as well as the persistence of a nuclear remnant. These studies suggest that transcriptional shutdown precedes lamina reorganization and chromatin breakdown during lens fibre cell denucleation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app