JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Roles of N-methyl-D-aspartate receptors in ocular dominance plasticity in developing visual cortex: re-evaluation.

Neuroscience 1998 Februrary
We have re-examined whether N-methyl-D-aspartate receptors play a specific role in experience-dependent plasticity in kitten visual cortex. A specific antagonist of this glutamate receptor subtype, D,L-2-amino-5-phosphonovaleric acid, was directly and continuously infused into kitten striate cortex for one week concurrently with monocular lid suture. In the hemisphere infused with 50 mM antagonist, we found the usual shift in ocular dominance toward the open eye with only a few binocular cells remaining. The changes were accompanied by an extremely high incidence (38%) of abnormal cells lacking orientation selectivity across different ocular dominance groups. In kitten cortex infused with 10 mM antagonist concurrently with monocular deprivation for a week, recording from a drug-affected region near the infusion centre, we again found the U-shaped ocular dominance distribution with the high incidence of non-selective cells. In antagonist-infused, otherwise normal striate cortex of adult cats, we found that the proportion of binocular cells decreased by one-half in two cellular populations: one recorded during the continuous infusion of 10 mM antagonist under general anaesthesia and paralysis, and the other about two days after stopping the infusion. We also established that in vivo concentrations of chronically infused 10 mM antagonist decreased, not near-exponentially, but linearly with increasing distance from the infusion site. Thus, the effects of a directly and continuously infused, concentrated antagonist of N-methyl-D-aspartate receptors on receptive-field properties of visuocortical cells are complex. The present findings strongly suggest that the antagonist effects in the developing cortex may be due primarily to blockade of normal synaptic transmission rather than specific disruption of an experience-dependent mechanism underlying ocular dominance plasticity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app