Journal Article
Review
Add like
Add dislike
Add to saved papers

The neuroendocrine control of atrial natriuretic peptide release.

Molecular Psychiatry 1997 September
In the initial experiments reviewed here, we show that atrial natriuretic peptide (ANP) plays an important inhibitory role in the control of sodium chloride and water intake since injections of ANP into the third ventricle (3V) caused a reduction in dehydration-induced drinking and also the drinking of salt in salt-depleted rats. Attention was then turned to the possible role of the brain ANP neurons in producing natriuresis which had earlier been shown to be caused by stimulations within the anterior ventral third ventricular region (AV3V). Stimulation in this region by carbachol produced natriuresis accompanied by a dramatic increase in plasma ANP concentrations and increased content of the peptide in medial basal hypothalamus (MBH), neurohypophysis (NH) and anterior pituitary gland (AP), without alterations in the content of ANP in lungs or atria. This suggested that the natriuresis resulting from the stimulation is brought about, at least in part, by the release of ANP from the brain. Conversely, there was a dramatic decline in plasma ANP at both 24 and 128 h after AV3V lesions had been placed. In view of the much larger quantities of the peptide stored in the atria, it is probable that the changes in the atrial release of the peptide were the main factors altering plasma ANP, but that there was concomitant alteration in the release of brain ANP as well. Blood volume expansion (BVE) by intraatrial injection of isotonic saline in the rat is a profound stimulus for ANP release. Lesions in the AV3V region, median eminence, or neurohypophysectomy blocked BVE-induced release of ANP indicating the crucial participation of the CNS in the response of ANP and natriuresis. Baroreceptor impulses from the carotid-aortic sinus regions and the kidney are important in the neuroendocrine control of ANP release since deafferentation of these regions lowered basal plasma ANP concentrations and prevented the increase after BVE. The evidence indicates that the ANP release, in response to BVE, is mediated by afferent baroreceptor impulses to the AV3V, which mediates the increased ANP release via activation of the hypothalamic ANP neuronal system. Our recent data support the hypothesis that BVE causes the release of ANP from ANPergic neurons in the hypothalamus that in turn stimulates release of oxytocin from the neurohypophysis. This oxytocin acts to release ANP from the right atrium that has negative chrono- and inotropic effects in the right atrium to reduce cardiac output, thereby reducing effective circulating blood volume. Then, the released ANP circulates to the kidneys and evokes natriuresis to return circulating blood volume to normal. This is further accomplished by reduction in intake of water and salt mediated also by brain ANP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app