Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Very low frequency oscillations in arterial blood pressure after autonomic blockade in conscious dogs.

The aim of this study was to investigate spontaneous variability of arterial blood pressure in conscious foxhounds in the absence of direct sympathetic and parasympathetic influences. Autonomic blockade was achieved by administration of the ganglionic blocking agent hexamethonium (n = 7). In contrast to the control group (n = 7), marked oscillations with a cycle length of 100 s (0.01 Hz) were observed. The relationship of the power densities of the oscillation band (0.01 +/- 0.005 Hz) to the total power increased threefold (0.213 +/- 0.007 vs. 0.057 +/- 0.005; P < 0.01). The 0.01-Hz oscillations typically commenced after some delay. To test whether the absence of the mechanoreceptor afferents was responsible for these fluctuations, we investigated an additional group of foxhounds that were subjected to total baroreceptor and cardiopulmonary receptor denervation (n = 7). Neither in this protocol, nor in a group subjected to denervation and ganglionic blockade (n = 6), did we observe sustained oscillations in this frequency range. Since the oscillations were not seen after combined afferent (mechanoreceptor denervation) and efferent (ganglionic) blockade, central oscillators as a source of the oscillations can be ruled out. A simple model of a circulating pressoric factor may explain the fluctuations, provided that there is a time delay between the stimulus and the release or action of the factor. The findings suggest that a circulating factor accounts for the 0.01-Hz oscillations, which is dependent on intact pathways from the cardiac receptors or baroreceptors to the central nervous system. This hypothesis is put forward since cardiopulmonary and baroreceptor denervation blocked the oscillations seen after ganglionic blockade.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app