Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Steady-state and picosecond-time-resolved fluorescence studies on the recombinant heme domain of Bacillus megaterium cytochrome P-450.

The conformational changes associated with the interaction of sodium laurate with the recombinant heme domain for cytochrome P-450BM3 have been investigated by steady-state and picosecond-time-resolved fluorescence spectroscopy. The steady-state quenching experiments show that while all the five tryptophan residues are accessible to acrylamide in the free enzyme as well as the enzyme x substrate complex, the number of tryptophan residues accessible to ionic quenchers decreases on interaction of the substrate with the enzyme. This indicates that some of the tryptophan residues move towards the core of the protein on interaction with the substrate. The number of tryptophan residues accessible to the solvent as determined by the calculation of the solvent-accessible area for the free enzyme agrees with the values obtained by the quenching experiments. The time-resolved fluorescence studies carried out by means of the time-correlated single-photon-counting technique show that the fluorescence-decay curve is best fitted to a three-exponential model (0.2, 1.0 and 5.4 ns). Lifetime distributions, as recovered by the maximum-entropy method, agree with the discrete exponential model. The binding of the substrate does not lead to any significant change in the lifetime components of the enzyme, indicating that the tryptophan residues are possibly away from the substrate-binding domain. The decay-associated emission spectra and the magnitudes of amplitude of different lifetimes indicate that the shortest lifetime component (tau1) originates from the three tryptophan residues that are completely or partially accessible to the solvent, and tau2 originates from the tryptophan residues that are buried in the core of the enzyme and not accessible to the solvent. X-ray crystallographic data and solvent-acessible-area calculations have been used to identify these residues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app