JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Direct thyroid hormone signalling via ADP-ribosylation controls mitochondrial nucleotide transport and membrane leakiness by changing the conformation of the adenine nucleotide transporter.

FEBS Letters 1996 September 24
Addition of triiodothyronine at 10 pM in vitro to hypothyroid rat liver mitochondria doubles the rate of the adenine nucleotide transporter at low ADP concentrations. Nicotinamide abolishes this effect in parallel with its inhibition of the ADP-ribosylation of an inner membrane protein identical in size to the transporter. Nicotinamide also renders euthyroid preparations indistinguishable from hypothyroid ones. A mechanism is offered to explain these findings in which it is proposed that the adenine nucleotide transporter is a true allosteric protein and that its covalent modification by ADP-ribosylation increases the stability of the less favoured externally-facing C-conformation and thus increases the proportion of transporters in this orientation: although the C-conformation is significantly more leaky to cations than the tight matrix-facing M-conformation, this enhances ADP import. This model is shown to offer an explanation not only for the transport effects of T3 but also for those of oxidative stress and ADP-ribosylation inhibitors on Ca2+, H+ and K+ transfer across the mitochondrial inner membrane. Ca2+ at 30 nM appears to stabilize the M-conformation of the transporter by a mechanism other than ADP-ribosylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app