Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Morphological and immunohistochemical properties of primary long-term cultures of adult guinea-pig ventricular cardiomyocytes with peripheral cardiac neurons.

Tissue & Cell 1996 August
Long-term (2-12 weeks) cultures of adult guinea-pig ventricular myocytes, cocultured with neurons derived from stellate or intrinsic cardiac ganglia, retain their functional properties (Horackova et al., 1993, 1994, 1995). The present study was designed to investigate the morphological and immunochemical properties of such neurons and their associated cardiomyocytes. Cultured myocytes studied by means of phalloidin-rhodamine (for F-actin) and an antibody raised against myomes revealed parallel myofibrils with striations typical of rod-shaped cardiomyocytes, even while myocytes changed from cylindrical to flattened form as they established intercellular contacts. Microtubular networks, identified by alpha-tubulin DM1A antibody, were arrayed longitudinally in myofibrils, being especially prominent during the formation of intercellular contacts between myocytes. Histochemically identified adult peripheral autonomic neurons cultured alone or with myocytes displayed a variety of shapes. alpha-Tubulin staining was associated with the somata and neurites of various-shaped neurons whether cultured alone or with myocytes. Cultured neurons derived from stellate and intrinsic cardiac ganglia also exhibited staining for the general neuronal marker PGP 9.5 (protein gene product 9.5), and for specific markers of the following neurochemicals: tyrosine hydroxylase, acetylcholinesterase, choline acetyltransferase, neuropeptide Y, vasoactive intestinal peptide, calcitonin gene-related peptide, bradykinin, oxytocin, and NADPH-diaphorase. These data indicate that: (a) adult ventricular myocytes cocultured with intrathoracic neurons retain the structural properties of adult myocytes found in vivo; (b) intrinsic cardiac and extrinsic intrathoracic neurons cultured alone or with cardiomyocytes display morphological characteristics similar to those of neurons studied in situ; (c) intrinsic cardiac and intrathoracic extracardiac neurons cultured alone or with cardiomyocytes display a variety of morphologies (unipolar, bipolar, and multipolar), larger and more multipolar neurons being present in cultures derived from stellate versus intrinsic cardiac ganglia; (d) such cultured neurons are associated with a number of neurochemicals, more than one chemical being associated with each neuron. This model presents an excellent opportunity to study the morphology of individual peripheral extracardiac and intracardiac neurons as well as their potential to produce various neurochemicals that are known to be involved in the neuromodulation of cardiomyocyte function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app