JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Oxidation of high density lipoproteins: characterization and effects on cholesterol efflux from J774 macrophages.

Oxidative modification of high density lipoproteins (HDL) may alter their capacity to mediate cellular cholesterol efflux. We studied the kinetics of copper-mediated oxidation of HDL and cholesterol efflux mediated by unmodified and oxidized HDL (oxHDL). Oxidation was measured by increases in absorbance at 234 nm (delta A234), production of thiobarbituric acid reactive substances (TBARS) and loss of trinitrobenzene sulfonic acid reactivity. Oxidation was dependent on copper concentration and showed a lag phase and propagation phase. Efflux of cholesterol from J774 macrophages measured by appearance of cellular [3H]cholesterol in the medium was lower by 16% after 4 h and 36% after 24 h with oxHDL compared to HDL. OxHDL-mediated efflux was also lower by 27% to 37% at lipoprotein concentrations of 10 to 200 micrograms protein/ml. Cholesterol efflux correlated negatively with TBARS production (r = -0.97, P < 0.003) and delta A234 (r = -0.77, P < 0.080). There was no difference in efflux mediated by apoproteins prepared from HDL and oxHDL. Efflux measured by change in cholesterol mass in medium was 78% lower with oxHDL. Inhibition of oxidation with butylated hydroxytoluene maintained the capacity of HDL to stimulate efflux. These results suggest that oxidation of HDL may impair its protective role against atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app