JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Chronic imipramine treatment induces downregulation of alpha-2 receptors in rat's locus coeruleus and A2 region of the tractus solitarius.

Imipramine is an effective antidepressant agent that blocks the reuptake of monoamines. In order to understand some of its basic mechanisms of action, we investigated the effects of chronic imipramine administration (10 mg/kg, i.p.; 21 days) on the alpha-2 receptor population of several brain sites. Alpha-2 receptor density was estimated by in vitro autoradiography using [3H]Idazoxan. The densitometric analysis revealed a decreased receptor density in the A2 region of the tractus solitarius (20%) and locus coeruleus (16%). No changes were observed in the amygdala, pyriform cortex, periacueductal gray and the bed nucleus of the stria terminalis. These results suggest that chronic imipramine treatment selectively modulates the alpha-2 receptor population localized in the brain stem norepinephrine-rich nuclei and not in the population present on limbic structures innervated by noradrenergic terminal projections. The possible physiological consequences of this selective modulation of alpha-2 receptors are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app