Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

SmI cortical barrels in an Australian marsupial, Trichosurus vulpecula (brush-tailed possum): structural organization, patterned distribution, and somatotopic relationships.

This study reports on the cerebral cortex of an Australian marsupial, Trichosurus vulpecula (brush-tailed possum). It consists of an analysis of layer IV of somatosensory cortex in tangential sections of flattened specimens and in oblique radial sections stained to show Nissl substance or myelin, or tested for succinic dehydrogenase. It includes results of electrophysiological mapping experiments that ascertained the somatotopic significance of the cytoarchitecture of this cortical region. Layer IV has two interlocking cytoarchitectural fields: one granular (the barrelfield, comprising cell-dense barrels 150 to 500 microns in diameter) and one dysgranular. Only neurons within the granular field responded to light cutaneous stimulation. In the barrelfield cell-sparse septa (about 100 microns wide), low in succinic dehydrogenase activity and containing many radial myelinated axons, separate adjoining barrels. Possum barrels are "solid," lacking the prominent hollows characteristic of most rodent barrels. In some specimens three to five small neuronal "lobules" may constitute each large barrel. In tangential sections the size, shape, and arrangement of barrels combine to form a histological caricature of the possum's body, especially of the face and forepaw. Six rows of "mystacial barrels" are homeomorphic to the six rows of large mystacial vibrissae, and "forepaw barrels" are homeomorphic to the glabrous palmar and apical digital pads. Correlating cortical recording sites and receptive fields confirmed that individual barrels represent specific cutaneous regions. These results show that the cortical barrels of brush-tailed possums are remarkably similar to those of rodents, in structure, arrangement, and functional significance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app