Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots.

Entire sequences of the internal transcribed spacers (ITSs) and 5.8S subunit of nuclear ribosomal DNA (nrDNA) were obtained from nine grass species by direct double-stranded sequencing of polymerase chain reaction (PCR) amplified DNA fragments. These sequences from subfamily Pooideae (Triticum aestivum, Crithodium monococcum, Sitopsis speltoides, Hordeum vulgare, Secale montanum, Avena longiglumis, Bromus inermis, Brachypodium distachyon) and subfamily Panicoideae (Sorghum bicolor) together with published ITS sequence of rice (Oryza sativa, Bambusoideae) were analyzed using Wagner parsimony (PAUP) and the neighbor-joining distance method to assess the phylogenetic utility of ITS sequences at various taxonomic levels. Among the aligned sequences that ranged from 588 to 603 nucleotides in length, 118 of 269 variable sites contained potential phylogenetic information. A member of Bromus, B. inermis, was the sister taxon to the Triticeae species. Brachypodium was more distantly related to Triticeae than was Bromus or Avena. These data, with Oryza sativa as the outgroup, indicate monophyly of the Pooideae species and of the members of the tribe Triticeae within Pooideae. Phylogenetic trees of the 10 grass species generated from the ITS sequence data were in general agreement with phylogenies based on molecular data from ribosomal RNA (rRNA) and chloroplast DNA (cpDNA) of similar grass taxa. This study reaffirms that sequences of the ITS region are useful for phylogenetic inference among closely related monocot species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app