JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Isolation and stability of partially oxidized intermediates of carp hemoglobin: kinetics of CO binding to the mono- and triferric species.

Biochemistry 1994 May 18
The monoliganded and triliganded forms of the asymmetric valency hybrids of carp hemoglobin were isolated using high-performance liquid chromatography. These partially oxidized hybrids were shown to be sufficiently stable to permit the measurement of the kinetics of CO binding. The effects of protons and inositol hexaphosphate on the rates of these reactions were examined. The kinetics of CO recombination with these partially oxidized derivatives were compared to the kinetics of CO binding to the fully ferrous molecule. To a first approximation, the kinetic behavior of the monoferric derivative was consistent with a small shift in the T<==>R equilibrium in favor of the R state. The presence of three ferric ligands resulted in a still greater shift in the conformational equilibrium in favor of the R state. The kinetic behavior of the triferric molecule was similar, but not identical, to that of a fully ferrous molecule which is triliganded with CO. The properties of both asymmetric valency hybrids were responsive to the nature of the ligand; i.e., the rate of CO binding was increased more by the presence of cyanide on the ferric hemes than by water. Not all of the data could be accommodated within the two-state model. For example, there was evidence of an altered T state in the case of the tricyanomet derivative at low pH in the presence of inositol hexaphosphate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app