Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Expression of insulin-like growth factors I and II in conceptuses from normal and diabetic mice.

Insulin-like growth factors (IGF-I and IGF-II) play an important regulatory role in fetal growth and development. Alterations in expression of these growth factors may result in developmental abnormalities, macrosomia, and intrauterine growth retardation, which occur with a higher incidence in diabetic pregnancies. In situ hybridization histochemistry was employed to investigate the distribution and abundance of IGF-I and IGF-II in peri-implantation and postimplantation conceptuses from normal and streptozotocin-treated diabetic mice. Animals were sacrificed on gestational days 5, 6, 7, 8, and 9. The entire uterine horn was prepared for hybridization with antisense and sense alpha 35S-dATP labeled oligonucleotide probes for IGF-I, IGF-II, and mouse beta-actin. IGF-I transcript was apparent only in myometrium at 6 days of gestation in normal and diabetic mice. IGF-II transcripts were restricted to trophoectoderm cells within the implantation chamber on day 5. Following implantation, IGF-II transcripts were found in trophoectodermal derivatives, primitive endoderm, mesoderm, heart, walls of the foregut, and mesenchyme in normal and diabetic postimplantation conceptuses. There were no apparent differences between normal and diabetic samples in the distribution and abundance of the IGF-II transcript from gestational days 7, 8, and 9. The embryos from the diabetic mother at day 6 were growth retarded and had a significant decrease in the expression of IGF-II. These results suggest that maternal hyperglycemia may retard development of the early implanting conceptus in a narrow window around day 6 through a mechanism involving decreased IGF-II expression.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app