JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Subtraction scanning acoustic microscopy reveals motility domains in cells in vitro.

Scanning acoustic microscopy (SAM) observes all mechanical properties of living cells. Subtraction of the SAM images (SubSAM) of live cells was developed as a method for investigating minimal changes in cellular topography and elasticity. The image formation in the SubSAM takes into account the motion of cell mass as well as the changes of tension. High spatial and temporal resolution of the SubSAM revealed the structure of motile processes that develops at increasing time intervals, thus allowing the arising complexity of motion to be registered and investigated. Independent spots of activity emerge on a quiescent background as motility domains; they may change position, divide, merge, or disappear after a long time interval. In addition, zones of quiescence were identified over central parts of cytoplasmic lamellae. Nonmalignant (Ep: tadpole epidermal cells, XTH2: endothelial cells from tadpole hearts, 3T3 cells) and neoplastic cells (K2 cells of rat fibrosarcoma, A870N cells selected from K2) were investigated with the SubSAM. Three types of domains of subcellular cytoplasmic motility were identified in time series of two-dimensional SubSAM iamges in normal and neoplastic cells. Of them only the wave-like domain is self-evident, being derived from ruffling and protruding activity at the cell margin. Two other domains wait for detailed analysis. The oscillating domain is a visualization of tension within the cell(s), and the nucleating domain indicates intracellular processes possibly preceding locomotion. Differences in motile domains were found between low K2 and high A870N metastatic cells. The dynamics of motility domains of the A870N cells resembled that of the highly motile Ep cells. Cell morphotype and motile activity of the A870N cells are significantly influenced by the pH of the medium. It became evident that identification of the otherwise invisible motile domains in living cells by SubSAM opens a new approach to a characterization of cell motility in vitro and to an understanding of early cellular reactions to various stimuli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app