Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Neither reduced uptake nor increased efflux is encoded by tellurite resistance determinants expressed in Escherichia coli.

Rates of uptake of the TeO3(2-) oxyanion were investigated in Escherichia coli cells containing tellurite resistance determinants from both plasmid (RK2Ter, R478, pMER610, MIP233, pHH1508a, pMUR) and chromosomal (tehAB) sources. The uptake was investigated to determine whether or not reduced uptake or increased efflux is involved in the tellurite resistance mechanism. Reduced TeO3(2-) uptake generated by cultures harboring arsABC from the plasmid R773, which has been previously shown to be an oxyanion efflux transporter, was used as the standard. Uptake curves were found to be essentially identical among E. coli cultures harboring the tellurite resistance plasmids RK2Ter, pMER610, pHH1508a, and pMUR and cultures harboring tellurite-sensitive control plasmids. Cultures harboring clones of the tehAB operon from E. coli showed no change in the TeO3(2-) accumulation. Cultures harboring R478 demonstrated reduced uptake. However, a subclone containing only the tellurite resistance determinant displayed no reduced uptake. This suggests that there may be another determinant on R478 other than the primary tellurite resistance determinant that gives rise to TeO3(2-) efflux. These results demonstrate that neither reduced uptake nor increased efflux is responsible for the tellurite resistance in the resistance determinants investigated here.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app