Add like
Add dislike
Add to saved papers

Intranuclear sites of Np 237 in mammalian cells: a study using electron microscopy and electron probe microanalysis.

Two methods, electron microscopy and wavelength dispersive electron probe microanalysis, were used to determine the intracellular sites and chemical form of concentrations of neptunium nitrate 237 after chronic intoxication by the intraperitoneal route in two organs in the rat known to concentrate this element (kidney, liver). Abnormal intranuclear formations in the form of clusters of dense granules containing neptunium, phosphorus, sulphur, and calcium were found in the nuclei of kidney proximal tubule cells and hepatocytes. These formations had a maximum diameter of the order of 2 microns and were located in the central part of the nucleus, away from the nucleolus and peripheral chromatin. Serious nuclear and cytoplasmic ultrastructural lesions are often associated in cells containing neptunium inclusions. The absorbed doses in the kidney and the liver were very low. A relationship between these abnormal intranuclear structures and the carcinogenic effect of neptunium remains to be clarified. This effect is related more probably to the chemical toxicity of Np 237.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app