Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Role of the Syk autophosphorylation site and SH2 domains in B cell antigen receptor signaling.

To explore the mechanism(s) by which the Syk protein tyrosine kinase participates in B cell antigen receptor (BCR) signaling, we have studied the function of various Syk mutants in B cells made Syk deficient by homologous recombination knockout. Both Syk SH2 domains were required for BCR-mediated Syk and phospholipase C (PLC)-gamma 2 phosphorylation, inositol 1,4,5-triphosphate release, and Ca2+ mobilization. A possible explanation for this requirement was provided by findings that recruitment of Syk to tyrosine-phosphorylated immunoglobulin (Ig) alpha and Ig beta requires both Syk SH2 domains. A Syk mutant in which the putative autophosphorylation site (Y518/Y519) of Syk was changed to phenylalanine was also defective in signal transduction; however, this mutation did not affect recruitment to the phosphorylated immunoreceptor family tyrosine-based activation motifs (ITAMs). These findings not only confirm that both SH2 domains are necessary for Syk binding to tyrosine-phosphorylated Ig alpha and Ig beta but indicate that this binding is necessary for Syk (Y518/519) phosphorylation after BCR ligation. This sequence of events is apparently required for coupling the BCR to most cellular protein tyrosine phosphorylation, to the phosphorylation and activation of PLC-gamma 2, and to Ca2+ mobilization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app