Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Pulse wave propagation.

This report evaluates pulse wave propagation with respect to contributions by vascular wall elastic and geometric properties, vessel wall and blood viscosity, and nonlinearities in system parameters and in the equations of motion. Discrepancies in results obtained with different experimental methods and theory are discussed and resolved. A three-point pressure technique was used to obtain measurements from the abdominal aorta, carotid, iliac, and femoral arteries of dogs. Computations involved linear, as well as nonlinear methods. Results are presented along a continuous path of transmission (abdominal aorta, iliac, femoral), and it is shown that variations in phase velocity can be explained entirely by the geometric variation of these vessels. Phase velocities are shown to be frequency independent at approximately greater than 4 Hz whereas attenuation increases progressively for higher frequencies. Determination of propagation coefficients using maximal, compounded values of reported viscoelastic and geometric properties just manages to span the range of phase velocities, determined in different laboratories, but does not do so for attenuation. Also, differences in experimental techniques cannot explain these discrepancies. Consideration of geometric taper, nonlinear compliance, all the terms in the equation of motion, and the effect of wall and blood viscosity resolves discrepancies between theoretical and experimentally derived phenomena.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app