Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Molybdenum cofactor requirement for biotin sulfoxide reduction in Escherichia coli.

The bisC gene of Escherichia coli is tentatively identified as the structural gene for biotin sulfoxide reductase by the isolation of bisC(Ts) mutants that make thermolabile enzyme. The products of four other E. coli genes (chlA, chlB, chlE and chlG) are also needed for enzymatic activity. Mutations previously assigned to the bisA, bisB, and bisD genes belong to genes chlA, chlE, and chlG, respectively. The biotin sulfoxide reductase deficiency of a chlG, mutant is partially reversed by the addition of 10 mM molybdate to the growth medium. Mutational inactivation of the chlD gene reduces the specific activity of biotin sulfoxide reductase about twofold. This effect is reversed by the addition of 1 mM molybdate to the growth medium. The specific activity of biotin sulfoxide reductase is decreased about 30-fold by the presence of tungstate in the growth medium, an effect that has been observed previously with nitrate reductase and other molybdoenzymes. The specific activity of biotin sulfoxide reductase is not elevated in a lysate prepared by derepressing a lambda cI857 chlG prophage. Whereas biotin sulfoxide reductase prepared by sonic extraction of growing cells is almost completely dependent on the presence of a small heat-stable protein resembling thioredoxin, much of the enzyme obtained from lysates of thermoinduced lambda cI857 lysogens does not require this factor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app