Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Abnormal copper metabolism and deficient lysyl oxidase activity in a heritable connective tissue disorder.

Biochemical abnormalities were studied in two brothers with bladder divericulas, inguinal hernias, slight skin laxity, and hyperelasticity and skeletal abnormalities including occipital exostoses. Lysyl oxidase activity was low in the medium of cultured skin fibroblasts, this abnormality being accompanied by reduced conversion of the newly synthesized collagen into the soluble form. Copper concentrations were markedly elevated in the cultured skin fibroblasts, but decreased in the serum and hair. Serum cerulophasmin levels were also low. The reduced lysyl oxidase activity is suggested to be responsible for ther clinical manifestations, but the deficiency in this copper-dependent enzyme may be secondary to the abnormalities in the metabolism of the cation. Nevertheless, a mutation directly affecting both lysyl oxidase and an intracellular copper transport protein cannot be excluded. The disease is tentatively classified as one subtype of the Ehlers-Danlos syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app