JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Mechanism of suppression in Drosophila. V. Localization of the purple mutant of Drosophila melanogaster in the pteridine biosynthetic pathway.

The suppressible eye color mutant purple (pr) of Drosophila melanogaster is known to be unable to synthesize a wild-type complement of pteridine eye pigments. This study measures the reduced levels of drosopterins, sepiapterin, and an unidentified presumed pteridine in pr and prbw. Pteridine analyses in double mutants combining pr with one of three other eye color mutants sepia, Henna-recessive3, and prune2, suggest that the metabolic block in pr occurs prior to sepiapterin biosynthesis. Measurements of GTP and GTP cyclohydrolase in pr showed wild-type levels and indicate the metabolic block in pr to be at one of the steps converting dihydroneopterin triphosphate to sepiapterin. Quantitation of pteridines in suppressed purple [su(s)2; pr and pr; su(pr)e3] shows restoration of pteridines to wild-type or nearly wild-type levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app