Add like
Add dislike
Add to saved papers

A deep reinforcement learning algorithm framework for solving multi-objective traveling salesman problem based on feature transformation.

As a special type of multi-objective combinatorial optimization problems (MOCOPs), the multi-objective traveling salesman problem (MOTSP) plays an important role in practical fields such as transportation and robot control. However, due to the complexity of its solution space and the conflicts between different objectives, it is difficult to obtain satisfactory solutions in a short time. This paper proposes an end-to-end algorithm framework for solving MOTSP based on deep reinforcement learning (DRL). By decomposing strategies, solving MOTSP is transformed into solving multiple single-objective optimization subproblems. Through linear transformation, the features of the MOTSP are combined with the weights of the objective function. Subsequently, a modified graph pointer network (GPN) model is used to solve the decomposed subproblems. Compared with the previous DRL model, the proposed algorithm can solve all the subproblems using only one model without adding weight information as input features. Furthermore, our algorithm can output a corresponding solution for each weight, which increases the diversity of solutions. In order to verify the performance of our proposed algorithm, it is compared with four classical evolutionary algorithms and two DRL algorithms on several MOTSP instances. The comparison shows that our proposed algorithm outperforms the compared algorithms both in terms of training time and the quality of the resulting solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app