Add like
Add dislike
Add to saved papers

Cost prediction for ischemic heart disease hospitalization: Interpretable feature extraction using network analysis.

OBJECTIVES: Ischemic heart disease (IHD) is a significant contributor to global mortality and disability, imposing a substantial social and economic burden on individuals and healthcare systems. To enhance the efficient allocation of medical resources and ultimately benefit a larger population, accurate prediction of healthcare costs is crucial.

METHODS: We developed an interpretable IHD hospitalization cost prediction model that integrates network analysis with machine learning. Specifically, our network-enhanced model extracts explainable features by leveraging a diagnosis-procedure concurrence network and advanced graph kernel techniques, facilitating the capture of intricate relationships between medical codes.

RESULTS: The proposed model achieved an R2 of 0.804 ± 0.008 and a root mean square error (RMSE) of 17,076 ± 420 CNY on the temporal validation dataset, demonstrating comparable performance to the model employing less interpretable code embedding features (R2 : 0.800 ± 0.008; RMSE: 17,279 ± 437 CNY) and the hybrid graph isomorphism network (R2 : 0.802 ± 0.007; RMSE: 17,249 ± 387 CNY). The interpretation of the network-enhanced model assisted in pinpointing specific diagnoses and procedures associated with higher hospitalization costs, including acute kidney injury, permanent atrial fibrillation, intra-aortic balloon bump, and temporary pacemaker placement, among others.

CONCLUSION: Our analysis results demonstrate that the proposed model strikes a balance between predictive accuracy and interpretability. It aids in identifying specific diagnoses and procedures associated with higher hospitalization costs, underscoring its potential to support intelligent management of IHD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app