Add like
Add dislike
Add to saved papers

Pathway to Polyradicals: A Planar and Fully π-Conjugated Organic Tetraradical(oid).

In this work, we provide a general strategy to stabilize the ground state of polyradical(oid)s and make higher spin states thermally accessible. As a proof of concept, we propose to merge two planar fully π-conjugated diradical(oid)s to obtain a planar and cross-conjugated tetraradical(oid). Using multireference quantum chemistry methods, we show that the designed tetraradical(oid) is stabilized by aromaticity and delozalization in the π-system and has six thermally accessible spin states within 1.72 kcal/mol. Analysis of the electronic structure of these six states of the tetraradical(oid) shows that its frontier π-system consists of two weakly interacting subsystems: aromatic cycles and four unpaired electrons. Conjugation between unpaired electrons, which favors closed-shell structures, is mitigated by delocalization and the aromaticity of the bridging groups, leading to the synergistic cross-coupling between two diradical(oid) subunits to stabilize the tetraradical(oid) electronic structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app